


# NFPA 70E Electrical Safety, Arc Flash/Blast

# LEARNING OBJECTIVES:

- *Why Electrical Safety and Arc Flash Protection?*
- *What is electrical safety and What Does it Consist of?*
- *What does electrical safety look like in the Workplace*
  - *What Should You See from Employers*
- *The Elements of Electrical Safe Work Practices*
- *How Can OSHA Cite Elements of NFPA 70E?*

# Why Electrical Safety & Arc Flash Protection

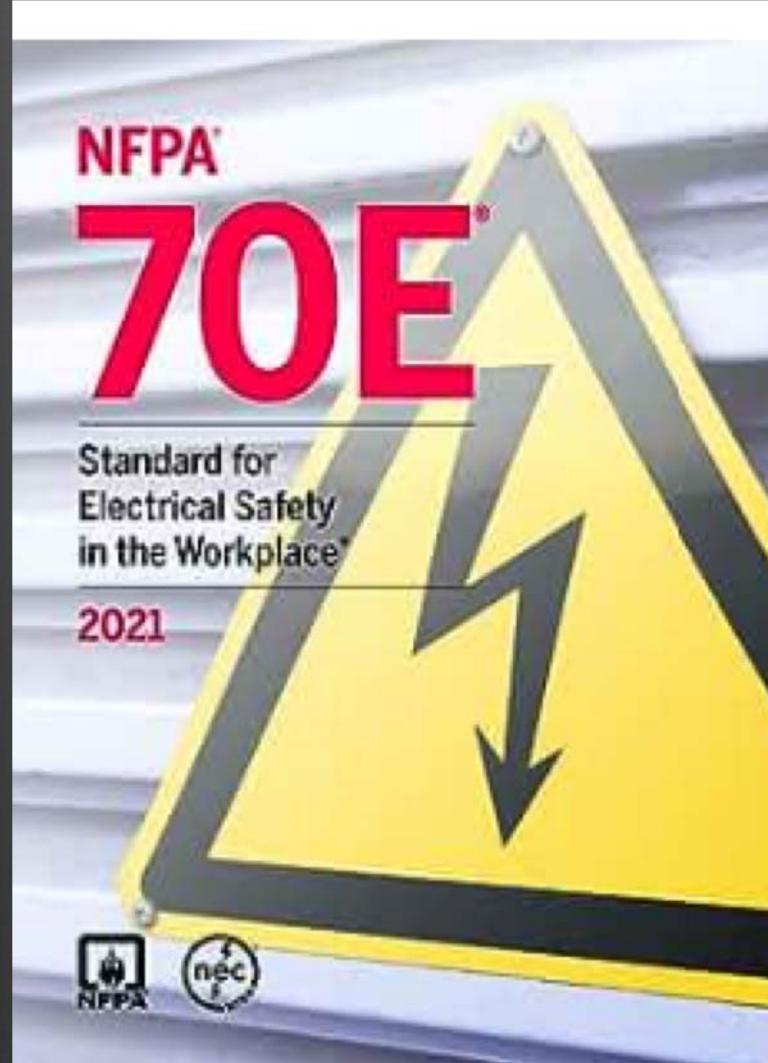


POSTED ON

LiveLeak



# What is Electrical Safety?



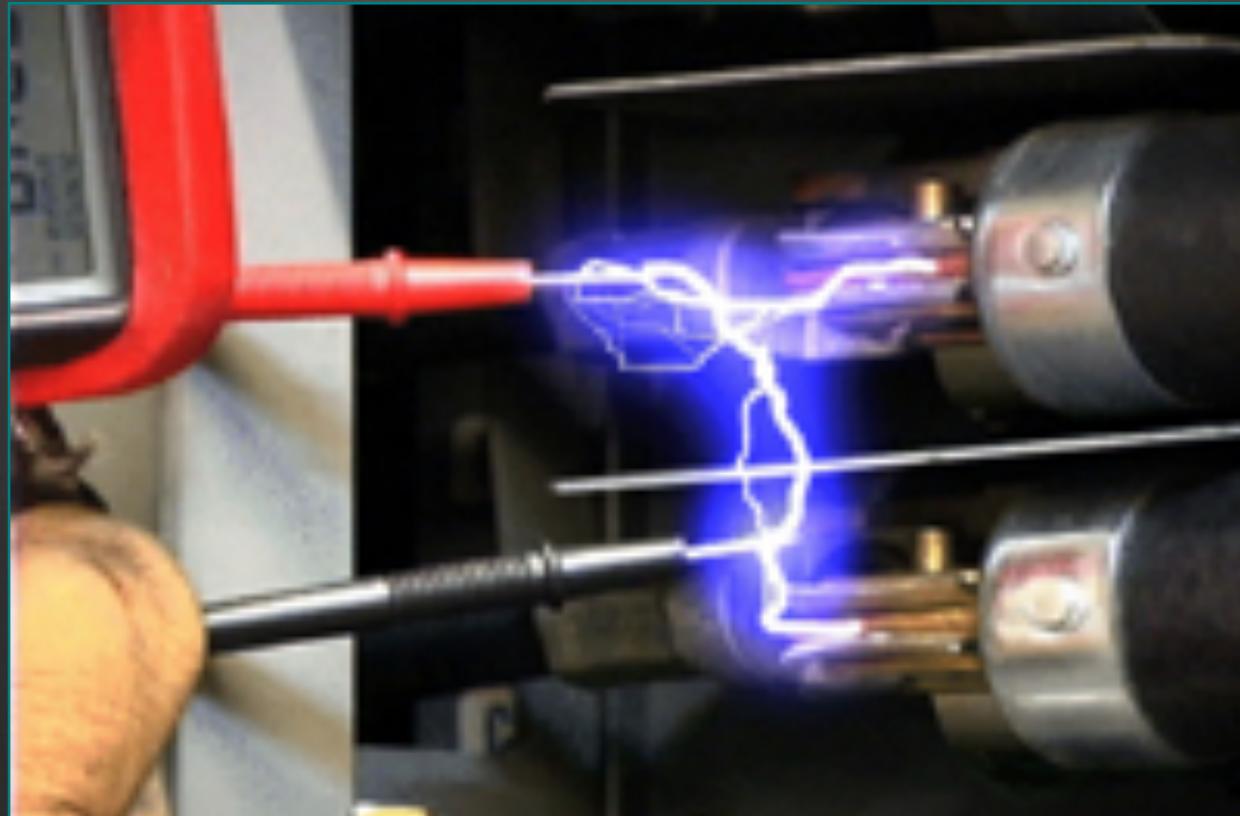

# What is Electrical Safety

- Protecting workers from the unexpected start-up, or unexpected reenergization of equipment, circuits, or parts while maintenance is being performed.
- Protecting workers from exposure to live electrical parts Including overhead and underground electrical distribution, including systems, equipment, circuits, and parts.

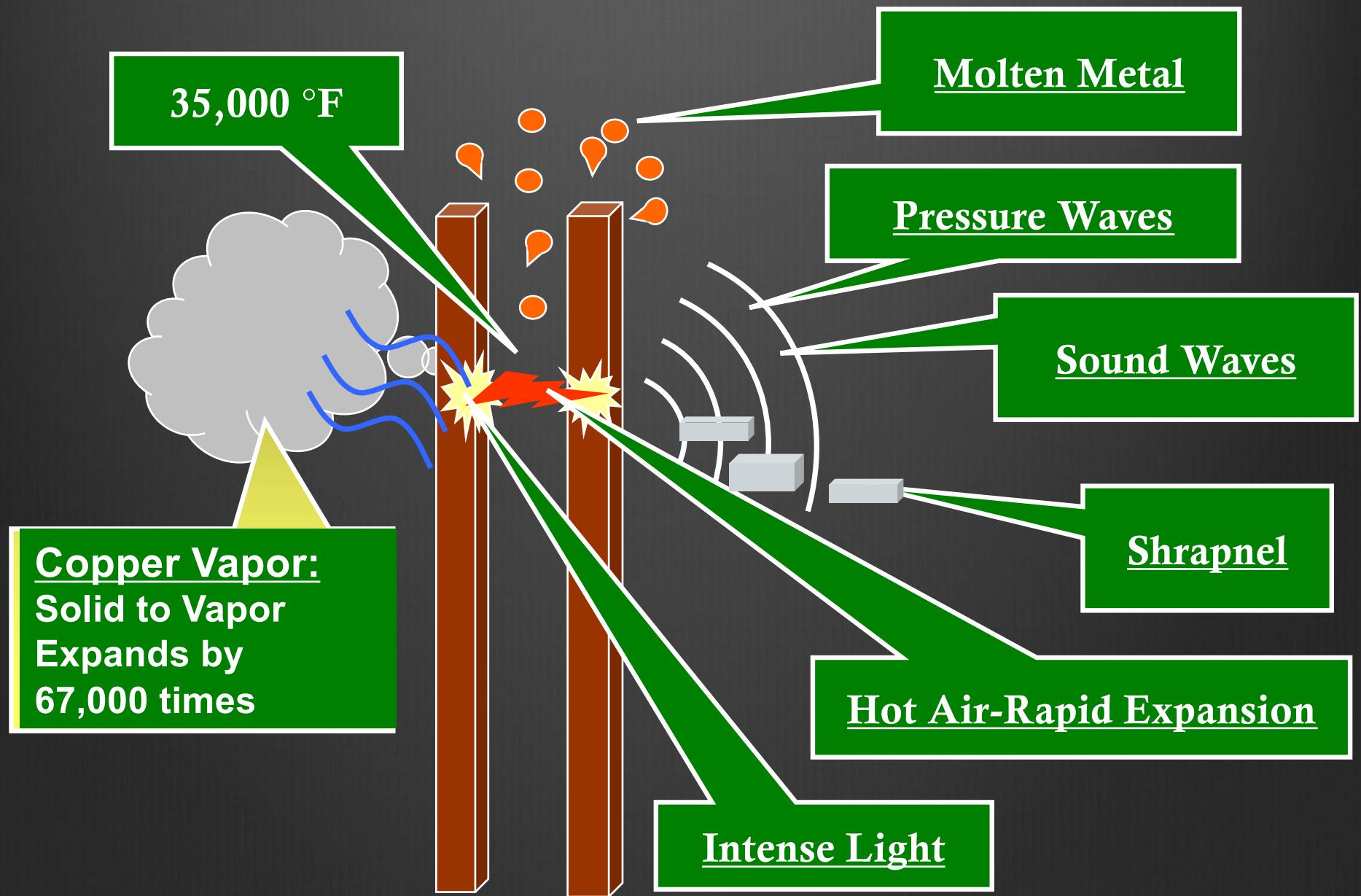
# NFPA 70E – 2021 Edition

## Note: 2024 coming soon




We will cover Key Provisions Later

# First, The Basic Hazards




# What is an Electric Arc?

An electric arc is a short circuit through the air.



# Electrical Arc



# Characteristics of an Electric Arc

- An electric arc will oscillate and escalate if not constrained.
- A single-phase electric arc can engulf a second or third conductor in only two cycles.
- An electric arc's current propels the arc away from the power source.

# What Causes Arc Flash?

- Dust, impurities, corrosion, condensation, animals
- Spark discharge from:
  - Accidental touching
  - Dropping tools
- Over-voltages across narrow gaps
- Failure of insulating materials
- Equipment failure

# Severity Factors



**Power** – amount of energy at the arc

**Distance** – of the worker to the arc

**Time** – duration of the arc exposure

# Arc Flash Events

Electric arc → Arc flash → Arc blast



Compliments of Salisbury Electrical  
Safety L.L.C.

# Forms of Arc Flash Energy

- Noise
- Expansion
- Vaporization
- Thermal radiation



# Electrical Arc Burn Injuries

- Occur from high temperature sources
- Deep and slow to heal
- Involve large areas of body
- Distance from arc determines severity



# Electric Shock Injury – Burn



# Severe Burns from Arc Flash



|           |                 |
|-----------|-----------------|
| Arc flash | up to 35,000° F |
| Sun       | 9,900° F        |

# Blindness

- Flash of light is so intense it can damage vision.



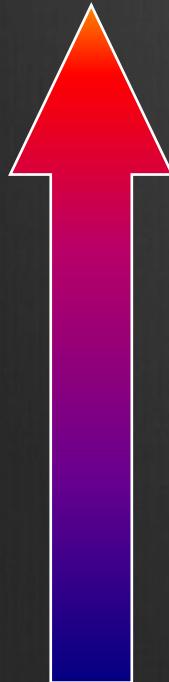
# Shrapnel Wounds



*Material and molten metal  
can hit the body at over  
700 miles per hour.*

# Blast Lung Injury (BLI)

- Arc blast can cause inhalation injuries.


For example:

- Inhaling high temperature copper vapor
- More than 100 toxic substances can be found in the fumes.

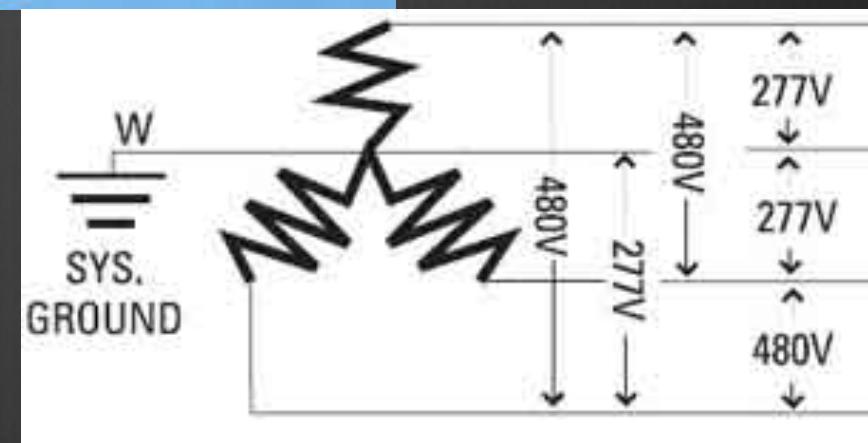


***BLI + Burns = Greater chance of death***

## Hearing Damage



Arc blast at 2 feet


145 decibels

Jet engine at 200 feet

132 decibels

Pain threshold

130 decibels



# What Voltages are Present? What Employers & You Should Know

120V

480V

4160V



# What Voltages are Present?

- 7.2KV
- 13.8KV
- 14.4KV



# What Voltages are Present?

- 20KV
- 138KV
- 345KV
- 500KV
- 750KV



# What Voltages are Present?



# What Voltages are Present?



# Hazard versus Risk

## Understand the Difference

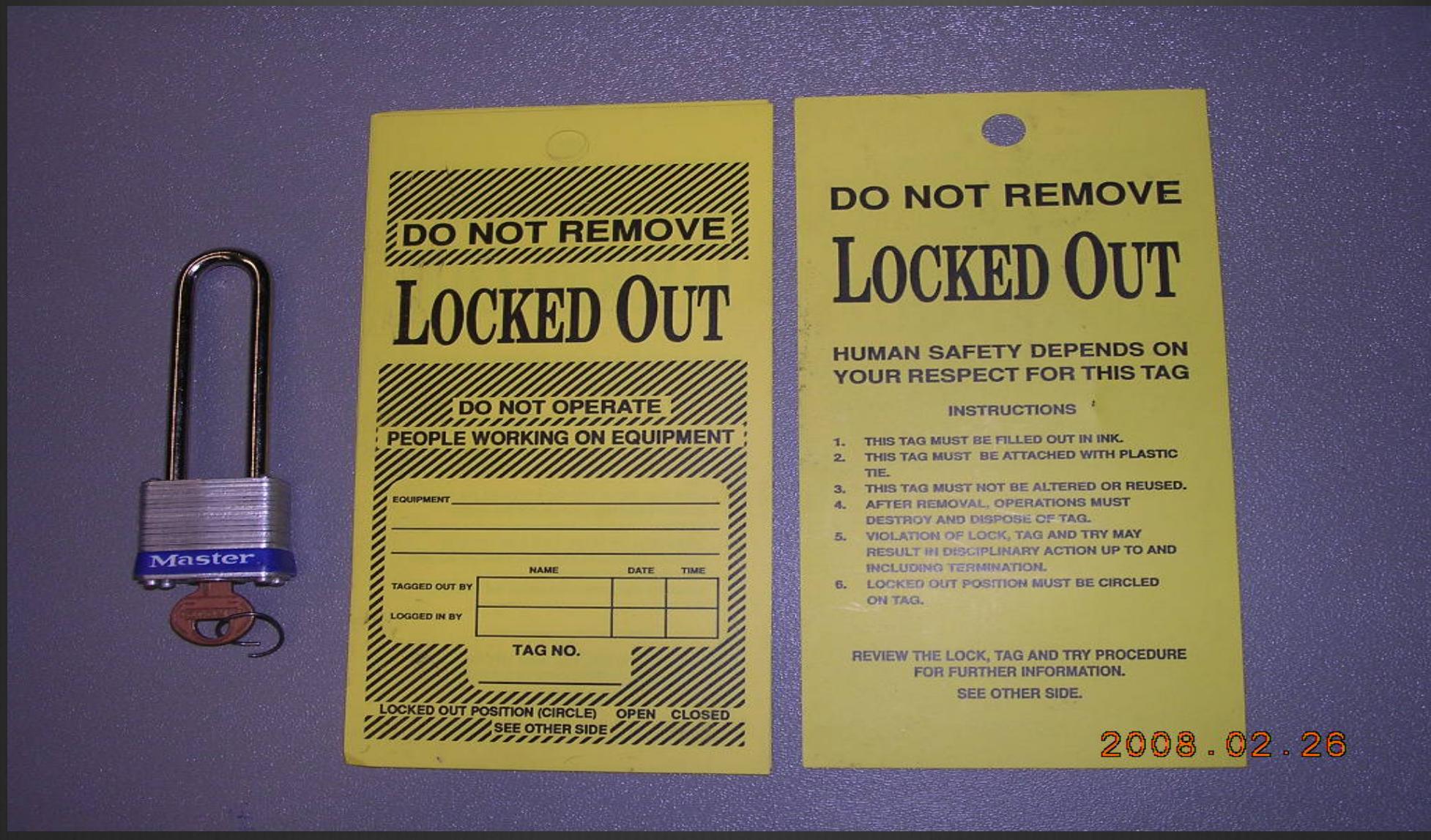
### The Hazard is Always There



#### HAZARD

Presence of a material or condition that has the potential for causing loss or harm

#### RISK


A combination of the severity of consequences and the likelihood of occurrence of undesired outcomes

Source: R.W. Johnson, "Risk Management by Risk Magnitudes," *Chemical Health & Safety* 5(5), 1998

# What Are the Elements of Electrical Safety?



# Lockout Tagout



## Energized Electrical Work Permit

Under NFPA 70E, there are only two instances in which an employee can work on live parts. In these situations, a work permit must be completed and approved by an authorized person.

1. When de-energizing would interrupt essential life support, emergency alarms or ventilation systems.
2. When the organization can demonstrate that de-energizing the system would introduce additional or increased hazards or that it is infeasible due to equipment design or operational limitations.

|                                                                                                                                                     |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <b>PART I TO BE COMPLETED BY THE REQUESTER</b>                                                                                                      |                                         |
| Job/Work Order Number _____                                                                                                                         |                                         |
| 1. Description of circuit/equipment/job location: _____                                                                                             |                                         |
| 2. Description of work to be done: _____                                                                                                            |                                         |
| 3. Justification of what the circuit/equipment cannot be de-energized or the work deferred until the next scheduled outage: _____                   |                                         |
| <b>PART II: TO BE COMPLETED BY THE ELECTRICALLY QUALIFIED PERSONS DOING THE WORK</b>                                                                |                                         |
| Check when Complete                                                                                                                                 |                                         |
| 1. Detailed job description procedure to be used in performing the above detailed work:                                                             | <input type="checkbox"/>                |
| 2. Description of the safe work practices to be employed:                                                                                           | <input type="checkbox"/>                |
| 3. Results of the shock hazard analysis:                                                                                                            | <input type="checkbox"/>                |
| 4. Determination of shock protection boundaries:                                                                                                    | <input type="checkbox"/>                |
| 5. Results of the flash hazard analysis:                                                                                                            | <input type="checkbox"/>                |
| 6. Determination of the flash protection boundary:                                                                                                  | <input type="checkbox"/>                |
| 7. Necessary personal protective equipment to safely perform the assigned task :                                                                    | <input type="checkbox"/>                |
| 8. Means employed to restrict the access of unqualified persons from the work area:                                                                 | <input type="checkbox"/>                |
| 9. Evidence of completion of job briefing including discussion of any job-related hazards:                                                          | <input type="checkbox"/>                |
| 10. Do you agree the above described work can be done safely? <input type="checkbox"/> Yes <input type="checkbox"/> No (if no, return to requester) |                                         |
| Electrically Qualified Person(s) _____ Date _____                                                                                                   |                                         |
| <b>PART III: APPROVAL(S) TO PERFORM THE WORK WHILE ELECTRICALLY ENERGIZED</b>                                                                       |                                         |
| Manufacturing Manager _____                                                                                                                         | Maintenance/Engineering Manager _____   |
| Safety Manager _____                                                                                                                                | Electrically Knowledgeable Person _____ |
| General Manager _____                                                                                                                               | Date _____                              |
| Note: Once the work is complete, forward this form to the site Safety Department for review and retention.                                          |                                         |

Source: National Fire Protection Association, © 2004

# Dated Insulated Gloves



# Protective Clothing



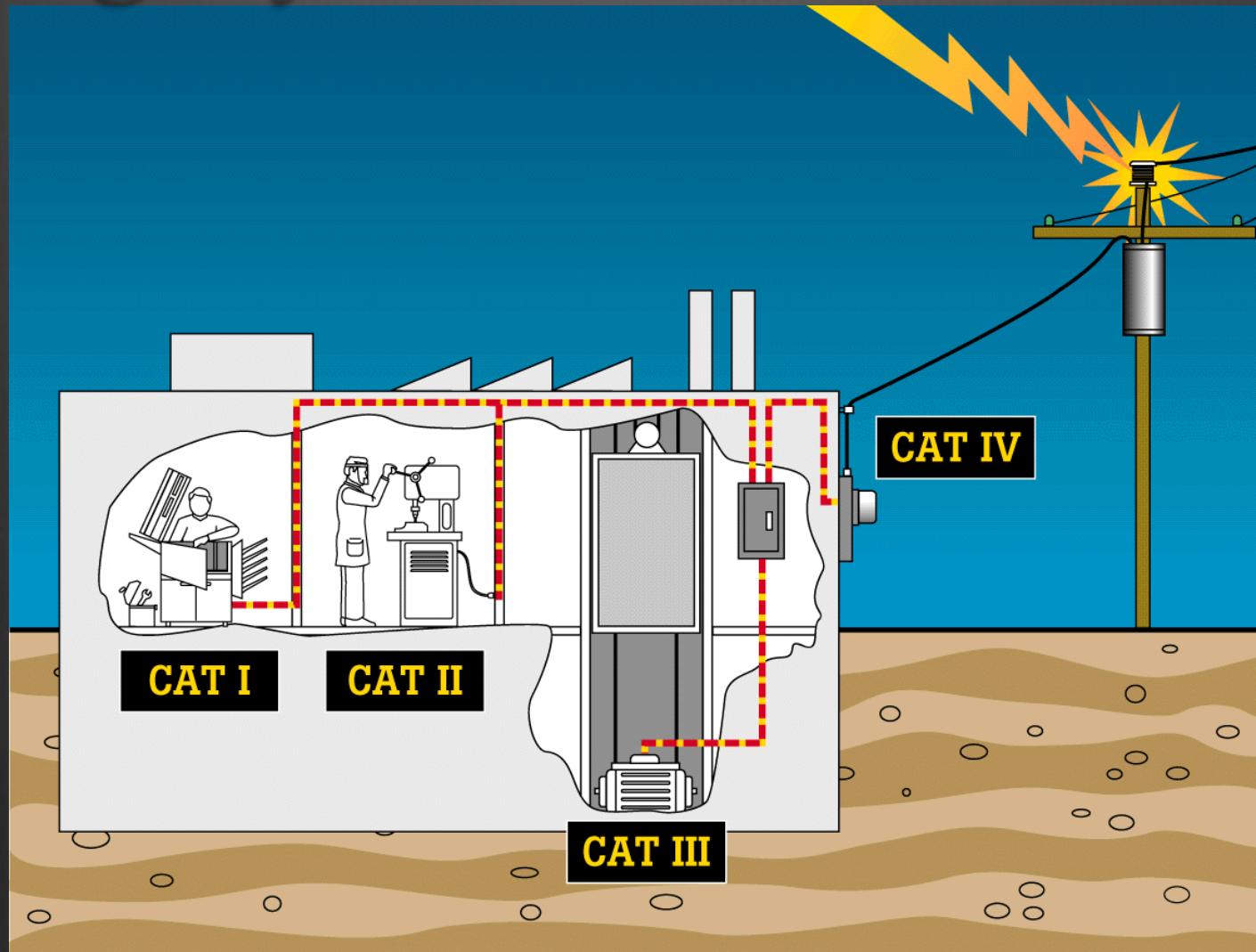


# Meter Safety-Does meet requirements of 120.1(5) – NFPA 70E

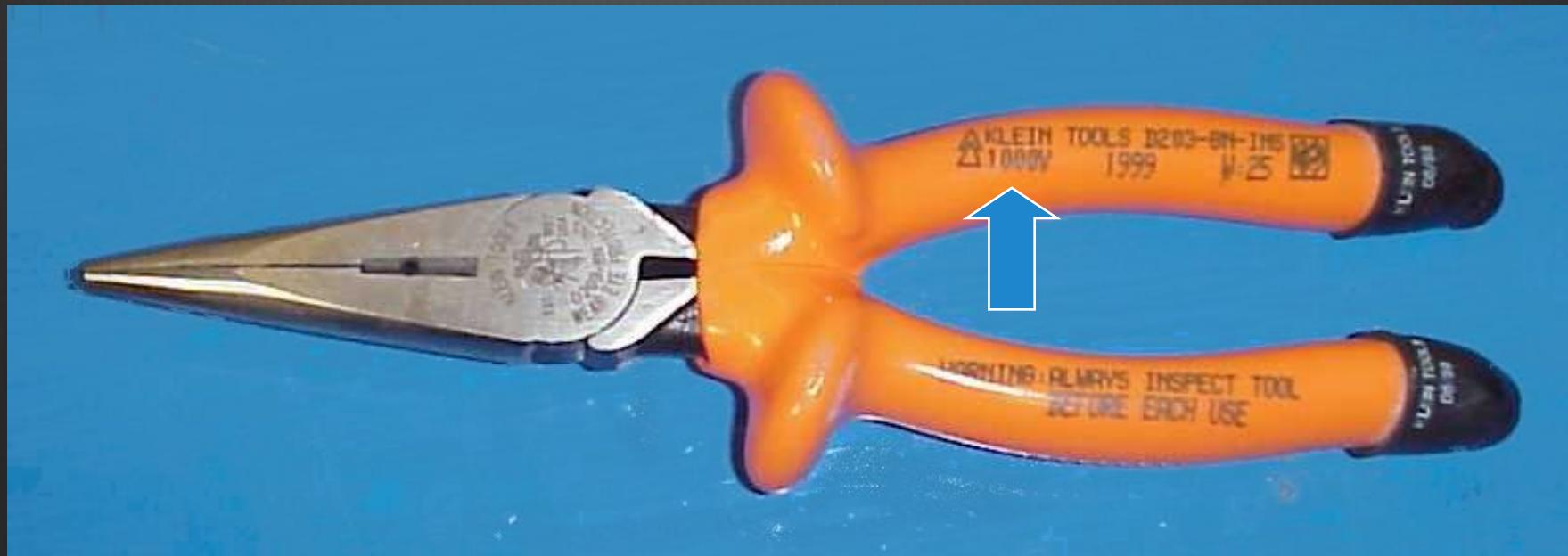


CAT III-1000  
V  
CAT IV -600V




CAT IV-600 V  
CAT III-1000 V




CAT  
III-600  
V



# Category locations



# Voltage Rated Tools



# Insulated Screwdrivers

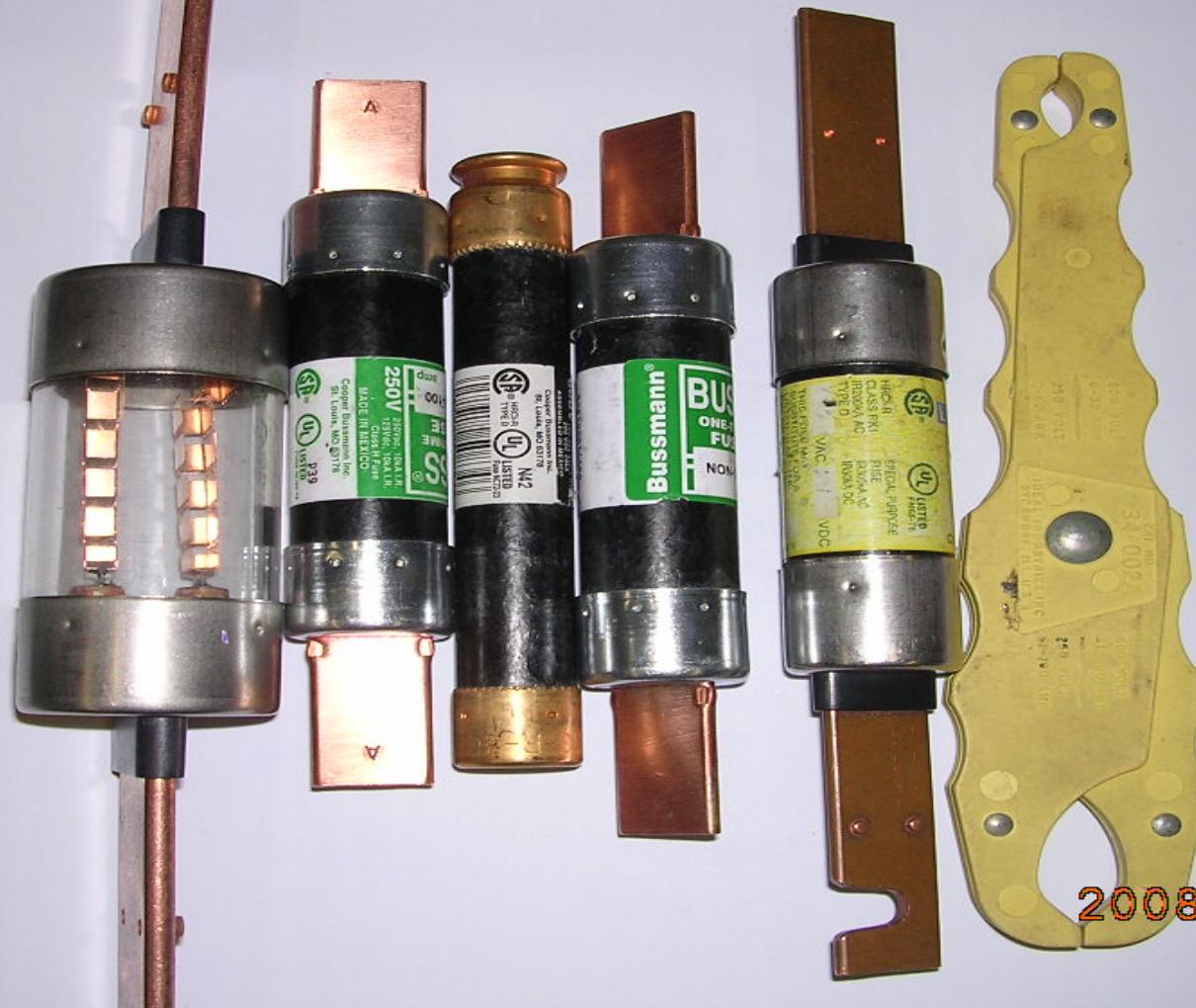


2008.02.26

**LIFE TIME  
6-PIECE ELECTRICAL SCREWDRIVER**

HARDNESS  
MEETS OR  
EXCEEDS  
SPEC

■ CHROME  
VANADIUM  
STEEL FOR  
LONGER  
LIFE AND  
DURABILITY


2008.02.26





2008.02.26

# Fuses



2008.02.26



2008.02.26

# Based on Voltages & Hazards Present - Establish Procedures

- Determine Voltage & Arc Flash Hazards
- Determine Who is Exposed
- Determine Protective Measures
- Determine OSHA Requirements
- Determine What NFPA 70E Procedures that Will be Followed

# PPE Selection – Using the NFPA 2021 Method & Tables



# Selecting Arc Flash Protection

1. Calculate incident energy and select PPE based upon that calculation.
2. By Task by Equipment, determine if Arc Flash PPE is Required.
3. Then Determine the hazard risk category by voltage and type of equipment.
4. *Then* select PPE based upon hazard/risk category.
6. Ensure PPE conforms to the code requirements

# Selecting Flash Protection

Let's Review The Tables in 70E 2021

They are Simplified

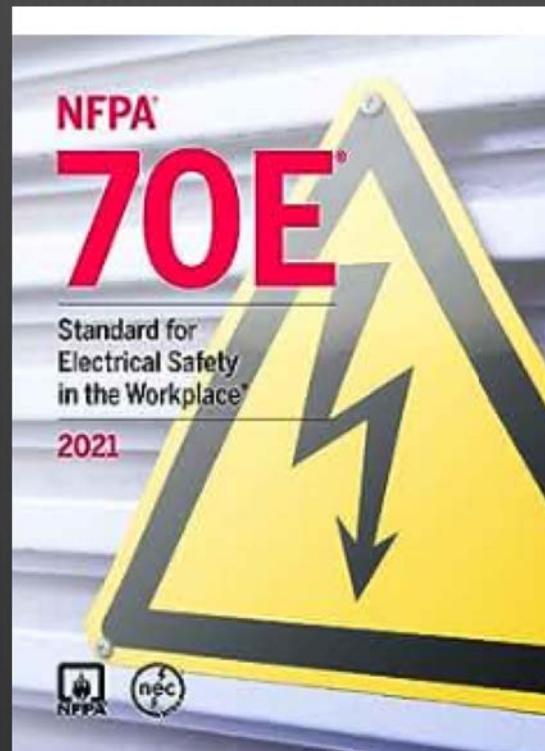



Table 130.7(C)(14) Informational Note: Standards for PPE

| Subject                                        | Document Title                                                                                                                                                                                                                                     | Document Number   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Clothing — Arc Rated                           | Standard Performance Specification for Flame Resistant and Electric Arc Rated Protective Clothing Worn by Workers Exposed to Flames and Electric Arc                                                                                               | ASTM F1506        |
|                                                | Standard Guide for Industrial Laundering of Flame, Thermal, and Arc Resistant Clothing                                                                                                                                                             | ASTM F1449        |
|                                                | Standard Guide for Home Laundering Care and Maintenance of Flame, Thermal and Arc Resistant Clothing                                                                                                                                               | ASTM F2757        |
| Aprons — Insulating                            | Live working — Protective clothing against the thermal hazards of an electric arc — Part 1-1: Test methods — Method 1: Determination of the arc rating (ELIM, ATPV, and/or EBT) of clothing materials and of protective clothing using an open arc | IEC 61482-1-1     |
|                                                | Live working — Protective clothing against the thermal hazards of an electric arc — Part 2: Requirements                                                                                                                                           | IEC 61482-2       |
|                                                | Standard Specification for Electrically Insulating Aprons                                                                                                                                                                                          | ASTM F2677        |
| Eye and Face Protection — General              | American National Standard for Occupational and Educational Professional Eye and Face Protection                                                                                                                                                   | ANSI/ISEA Z87.1   |
| Face — Arc Rated                               | Standard Test Method for Determining the Arc Rating and Standard Specification for Personal Eye or Face Protective Products                                                                                                                        | ASTM F2178        |
|                                                | Standard Specification for Personal Climbing Equipment                                                                                                                                                                                             | ASTM F887         |
| Footwear — Dielectric Specification            | Standard Specification for Dielectric Footwear                                                                                                                                                                                                     | ASTM F1117        |
| Footwear — Dielectric Test Method              | Standard Test Method for Determining Dielectric Strength of Dielectric Footwear                                                                                                                                                                    | ASTM F1116        |
| Footwear — Standard Performance Specification  | Standard Specification for Performance Requirements for Protective (Safety) Toe Cap Footwear                                                                                                                                                       | ASTM F2413        |
| Footwear — Standard Test Method                | Standard Test Methods for Foot Protections                                                                                                                                                                                                         | ASTM F2412        |
| Gloves — Arc Rated                             | Standard Test Method for Determining Arc Ratings of Hand Protective Products Developed and Used for Electrical Arc Flash Protection                                                                                                                | ASTM F2675/F2675M |
| Gloves — Leather Protectors                    | Standard Specification for Leather Protectors for Rubber Insulating Gloves and Mittens                                                                                                                                                             | ASTM F696         |
| Gloves — Rubber Insulating                     | Standard Specification for Rubber Insulating Gloves                                                                                                                                                                                                | ASTM D120         |
| Gloves and Sleeves — In-Service Care           | Standard Specification for In-Service Care of Insulating Gloves and Sleeves                                                                                                                                                                        | ASTM F496         |
| Head Protection — Hard Hats                    | American National Standard for Head Protection                                                                                                                                                                                                     | ANSI/ISEA Z89.1   |
| Rainwear — Arc Rated                           | Standard Specification for Arc and Flame Resistant Rainwear                                                                                                                                                                                        | ASTM F1891        |
| Rubber Protective Products — Visual Inspection | Standard Guide for Visual Inspection of Electrical Protective Rubber Products                                                                                                                                                                      | ASTM F1236        |
| Sleeves — Insulating                           | Standard Specification for Rubber Insulating Sleeves                                                                                                                                                                                               | ASTM D1051        |

Table 130.7(C)(15)(a) Arc Flash PPE Categories for Alternating Current (ac) Systems

| Equipment                                                                                                                                                                                                                                                             | Arc Flash PPE Category | Arc Flash Boundary |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|
| Panelboards or other equipment rated 240 volts and below<br>Parameters: Maximum of 25 kA available fault current; maximum of 0.03 sec (2 cycles) fault clearing time; minimum working distance 455 mm (18 in.)                                                        | 1                      | 485 mm (19 in.)    |
| Panelboards or other equipment rated greater than 240 volts and up to 600 volts<br>Parameters: Maximum of 25 kA available fault current; maximum of 0.03 sec (2 cycles) fault clearing time; minimum working distance 455 mm (18 in.)                                 | 2                      | 900 mm (3 ft)      |
| 600-volt class motor control centers (MCCs)<br>Parameters: Maximum of 65 kA available fault current; maximum of 0.03 sec (2 cycles) fault clearing time; minimum working distance 455 mm (18 in.)                                                                     | 2                      | 1.5 m (5 ft)       |
| 600-volt class motor control centers (MCCs)<br>Parameters: Maximum of 42 kA available fault current; maximum of 0.33 sec (20 cycles) fault clearing time; minimum working distance 455 mm (18 in.)                                                                    | 4                      | 4.3 m (14 ft)      |
| 600-volt class switchgear (with power circuit breakers or fused switches) and 600-volt class switchboards<br>Parameters: Maximum of 35 kA available fault current; maximum of up to 0.5 sec (30 cycles) fault clearing time; minimum working distance 455 mm (18 in.) | 4                      | 6 m (20 ft)        |
| Other 600-volt class (277 volts through 600 volts, nominal) equipment<br>Parameters: Maximum of 65 kA available fault current; maximum of 0.03 sec (2 cycles) fault clearing time; minimum working distance 455 mm (18 in.)                                           | 2                      | 1.5 m (5 ft)       |
| NEMA E2 (fused contactor) motor starters, 2.3 kV through 7.2 kV<br>Parameters: Maximum of 35 kA available fault current; maximum of up to 0.24 sec (15 cycles) fault clearing time; minimum working distance 910 mm (36 in.)                                          | 4                      | 12 m (40 ft)       |
| Metal-clad switchgear, 1 kV through 15 kV<br>Parameters: Maximum of 35 kA available fault current; maximum of up to 0.24 sec (15 cycles) fault clearing time; minimum working distance 910 mm (36 in.)                                                                | 4                      | 12 m (40 ft)       |
| Metal enclosed interrupter switchgear, fused or unfused type construction, 1 kV through 15 kV<br>Parameters: Maximum of 35 kA available fault current; maximum of 0.24 sec (15 cycles) fault clearing time; minimum working distance 910 mm (36 in.)                  | 4                      | 12 m (40 ft)       |
| Other equipment 1 kV through 15 kV<br>Parameters: Maximum of 35 kA available fault current; maximum of up to 0.24 sec (15 cycles) fault clearing time; minimum working distance 910 mm (36 in.)                                                                       | 4                      | 12 m (40 ft)       |
| Arc-resistant equipment up to 600-volt class<br>Parameters: DOORS CLOSED and SECURED; with an available fault current and a fault clearing time that does not exceed the arc-resistant rating of the equipment*                                                       | N/A                    | N/A                |
| Arc-resistant equipment 1 kV through 15 kV<br>Parameters: DOORS CLOSED and SECURED; with an available fault current and a fault clearing time that does not exceed the arc-resistant rating of the equipment*                                                         | N/A                    | N/A                |

N/A: Not applicable

Table 130.7(C)(15)(b) Arc Flash PPE Categories for dc Systems

| Equipment                                                                          | Arc Flash PPE Category | Arc Flash Boundary |
|------------------------------------------------------------------------------------|------------------------|--------------------|
| Storage batteries, dc switchboards, and other dc supply sources                    |                        |                    |
| Parameters: Greater than or equal to 100 volts and less than or equal to 250 volts |                        |                    |
| Maximum arc duration and minimum working distance: 2 sec @ 455 mm (18 in.)         |                        |                    |
| Available fault current less than 4 kA                                             | 2                      | 900 mm (3 ft)      |
| Available fault current greater than or equal to 4 kA and less than 7 kA           | 2                      | 1.2 m (4 ft)       |
| Available fault current greater than or equal to 7 kA and less than 15 kA          | 3                      | 1.8 m (6 ft)       |
| Storage batteries, dc switchboards, and other dc supply sources                    |                        |                    |
| Parameters: Greater than 250 volts and less than or equal to 600 volts             |                        |                    |
| Maximum arc duration and minimum working distance: 2 sec @ 455 mm (18 in.)         |                        |                    |
| Available fault current less than 1.5 kA                                           | 2                      | 900 mm (3 ft)      |
| Available fault current greater than or equal to 1.5 kA and less than 3 kA         | 2                      | 1.2 m (4 ft)       |
| Available fault current greater than or equal to 3 kA and less than 7 kA           | 3                      | 1.8 m (6 ft.)      |
| Available fault current greater than or equal to 7 kA and less than 10 kA          | 4                      | 2.5 m (8 ft)       |

## Notes:

(1) Apparatus that can be expected to be exposed to electrolyte must meet both of the following conditions:

- Be evaluated for electrolyte protection

Informational Note: ASTM F1296, *Standard Guide for Evaluating Chemical Protective Clothing*, contains information on evaluating apparel for protection from electrolyte.

- Be arc-rated

Informational Note: ASTM F1891, *Standard Specification for Arc and Flame Resistant Rainwear*, contains information on evaluating arc-rated apparel.

(2) A two-second arc duration is assumed if there is no overcurrent protective device (OCPD) or if the fault clearing time is not known. If the fault clearing time is known and is less than 2 seconds, an incident energy analysis could provide a more representative result.

Informational Note No. 1: When determining available fault current, the effects of cables and any other impedances in the circuit should be included. Power system modeling is the best method to determine the available short-circuit current at the point of the arc. Battery cell short-circuit current can be obtained from the battery manufacturer. See D.5 for the basis for table values and alternative methods to determine dc incident energy. Methods should be used with good engineering judgment.

Informational Note No. 2: The methods for estimating the dc arc flash incident energy that were used to determine the categories for this table are based on open-air incident energy calculations. Open-air calculations were used because many battery systems and other dc process systems are in open areas or rooms. If the specific task is within an enclosure, it would be prudent to consider additional PPE protection beyond the value shown in this table.

## Table 130.7(C)(15)(c) Personal Protective Equipment (PPE)

Arc-Flash PPE  
Category

## PPE

Arc-Rated Clothing, Minimum Arc Rating of 4 cal/cm<sup>2</sup> (16.75 J/cm<sup>2</sup>)<sup>a</sup>

Arc-rated long-sleeve shirt and pants or arc-rated coverall

Arc-rated face shield<sup>b</sup> or arc flash suit hoodArc-rated jacket, parka, high-visibility apparel, rainwear, or hard hat liner (AN)<sup>f</sup>

## Protective Equipment

Hard hat

Safety glasses or safety goggles (SR)

Hearing protection (ear canal inserts)<sup>c</sup>Heavy-duty leather gloves, arc-rated gloves, or rubber insulating gloves with leather protectors (SR)<sup>d</sup>Leather footwear<sup>e</sup> (AN)Arc-Rated Clothing, Minimum Arc Rating of 8 cal/cm<sup>2</sup> (33.5 J/cm<sup>2</sup>)<sup>a</sup>

Arc-rated long-sleeve shirt and pants or arc-rated coverall

Arc-rated flash suit hood or arc-rated face shield<sup>b</sup> and arc-rated balaclavaArc-rated jacket, parka, high-visibility apparel, rainwear, or hard hat liner (AN)<sup>f</sup>

## Protective Equipment

Hard hat

Safety glasses or safety goggles (SR)

Hearing protection (ear canal inserts)<sup>c</sup>Heavy-duty leather gloves, arc-rated gloves, or rubber insulating gloves with leather protectors (SR)<sup>d</sup>Leather footwear<sup>e</sup>Arc-Rated Clothing Selected so That the System Arc Rating Meets the Required Minimum Arc Rating of 25 cal/cm<sup>2</sup> (104.7 J/cm<sup>2</sup>)<sup>a</sup>

Arc-rated long-sleeve shirt (AR)

Arc-rated pants (AR)

Arc-rated coverall (AR)

Arc-rated arc flash suit jacket (AR)

Arc-rated arc flash suit pants (AR)

Arc-rated arc flash suit hood

Arc-rated gloves or rubber insulating gloves with leather protectors (SR)<sup>d</sup>Arc-rated jacket, parka, high-visibility apparel, rainwear, or hard hat liner (AN)<sup>f</sup>

## Protective Equipment

Hard hat

Safety glasses or safety goggles (SR)

Hearing protection (ear canal inserts)<sup>c</sup>Leather footwear<sup>e</sup>Arc-Rated Clothing Selected so That the System Arc Rating Meets the Required Minimum Arc Rating of 40 cal/cm<sup>2</sup> (167.5 J/cm<sup>2</sup>)<sup>a</sup>

Arc-rated long-sleeve shirt (AR)

Arc-rated pants (AR)

Arc-rated coverall (AR)

Arc-rated arc flash suit jacket (AR)

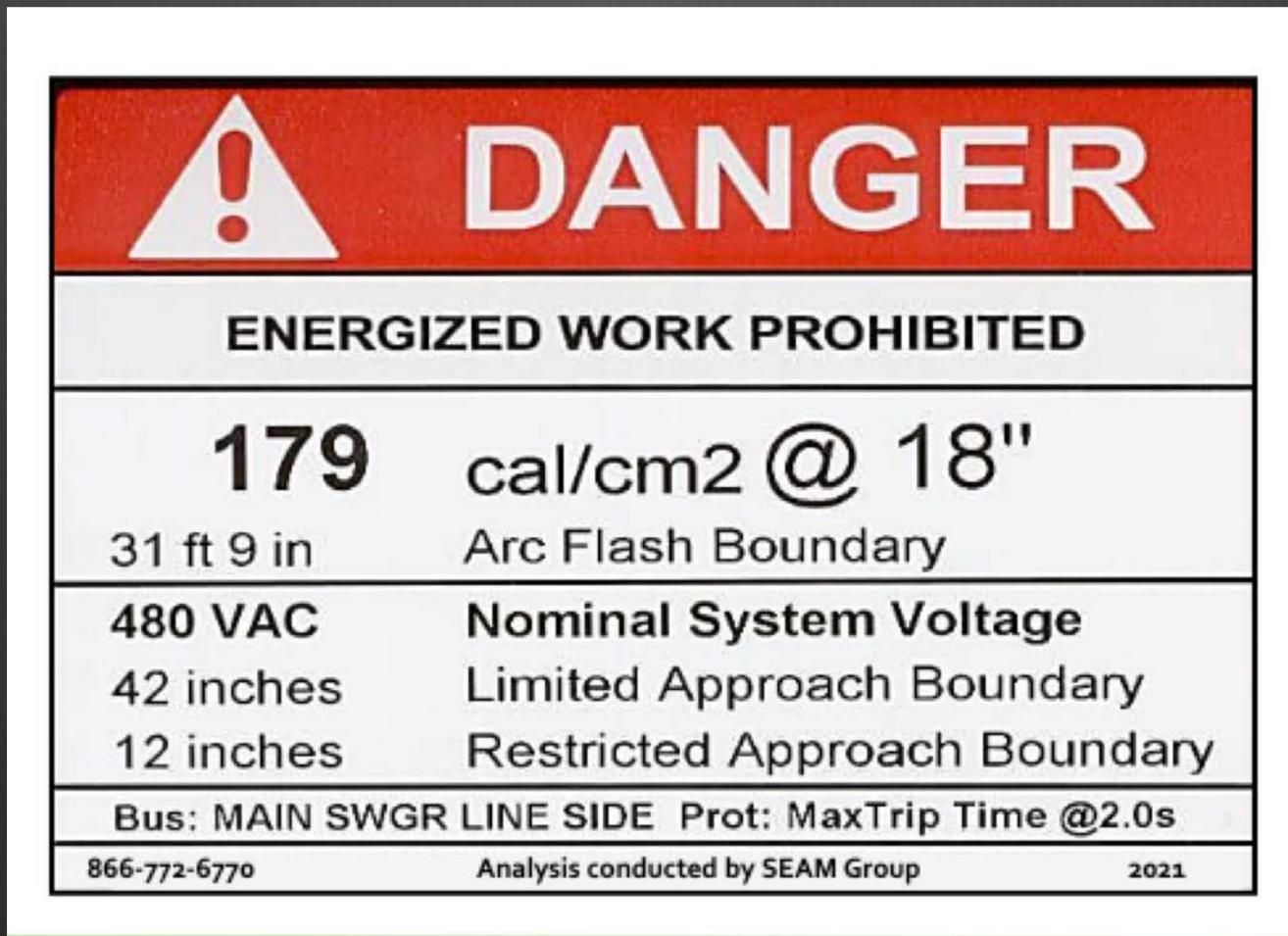
Arc-rated arc flash suit pants (AR)

Arc-rated arc flash suit hood

Arc-rated gloves or rubber insulating gloves with leather protectors (SR)<sup>d</sup>Arc-rated jacket, parka, high-visibility apparel, rainwear, or hard hat liner (AN)<sup>f</sup>

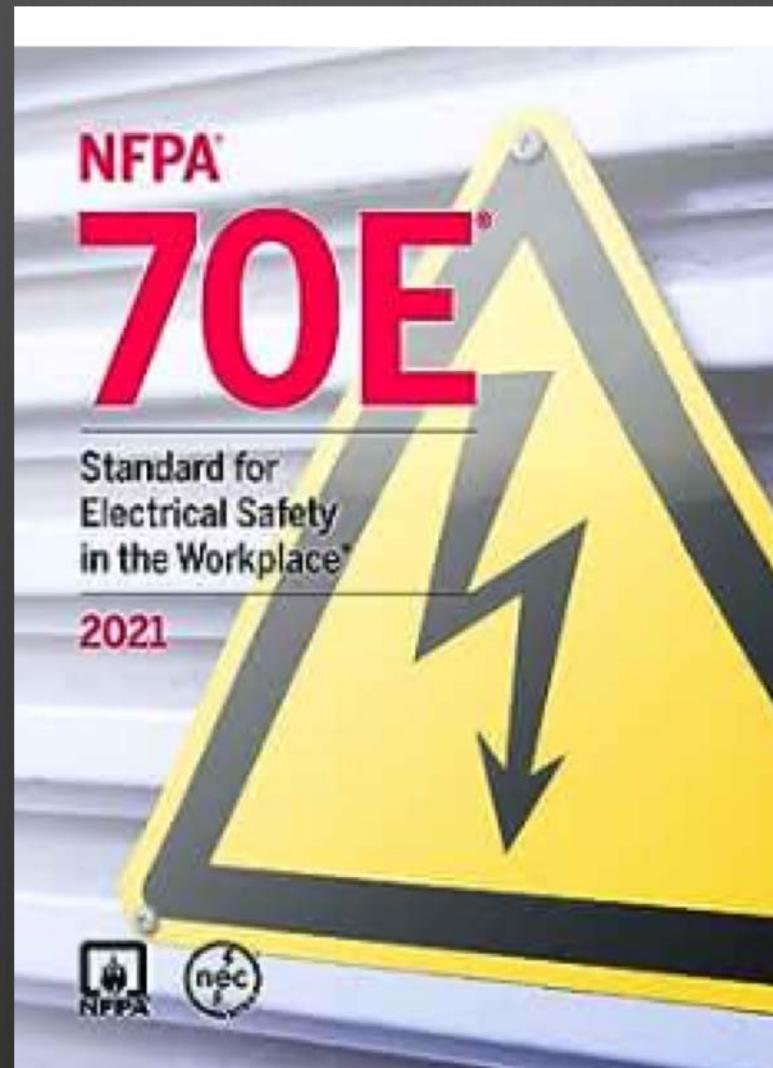
## Protective Equipment

Hard hat

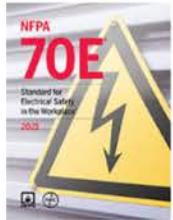

Safety glasses or safety goggles (SR)

Hearing protection (ear canal inserts)<sup>c</sup>Leather footwear<sup>e</sup><sup>a</sup> As needed (optional). AR: As required. SR: Selection required.  
<sup>b</sup> Arc rating is defined in Article 100.

Table 130.7(G) Informational Note: Standards on Other Protective Equipment


| Subject                                            | Document                                                                                                                                             | Document Number  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Arc Protective Blankets                            | Standard Test Method for Determining the Protective Performance of an Arc Protective Blanket for Electric Arc Hazards                                | ASTM F2676       |
| Arc Protective Blankets — Selection, Care, and Use | Standard Guide for Selection, Care, and Use of Arc Protective Blankets                                                                               | ASTM F3272       |
| Blankets                                           | Standard Specification for Rubber Insulating Blankets                                                                                                | ASTM D1048       |
| Blankets — In-service Care                         | Standard Specification for In-Service Care of Insulating Blankets                                                                                    | ASTM F479        |
| Covers                                             | Standard Specification for Rubber Insulating Covers                                                                                                  | ASTM D1049       |
| Fiberglass Rods — Live Line Tools                  | Standard Specification for Fiberglass-Reinforced Plastic (FRP) Rod and Tube Used in Live Line Tools                                                  | ASTM F711        |
| Insulated Hand Tools                               | Standard Specification for Insulated and Insulating Hand Tools                                                                                       | ASTM F1505       |
| Ladders                                            | American National Standard for Ladders — Wood — Safety Requirements                                                                                  | ANSI / ASC A14.1 |
|                                                    | American National Standard for Ladders — Fixed — Safety Requirements                                                                                 | ANSI / ASC A14.3 |
|                                                    | American National Standard Safety Requirements for Job Made Wooden Ladders                                                                           | ANSI ASC A14.4   |
|                                                    | American National Standard for Ladders — Portable Reinforced Plastic — Safety Requirements                                                           | ANSI ASC A14.5   |
| Line Hose                                          | Standard Specification for Rubber Insulating Line Hoses                                                                                              | ASTM D1050       |
| Line Hose and Covers — In-service Care             | Standard Specification for In-Service Care of Insulating Line Hose and Covers                                                                        | ASTM F478        |
| Plastic Guard                                      | Standard Test Methods and Specifications for Electrically Insulating Plastic Guard Equipment for Protection of Workers                               | ASTM F712        |
| Sheeting                                           | Standard Specification for PVC Insulating Sheeting                                                                                                   | ASTM F1742       |
|                                                    | Standard Specification for Rubber Insulating Sheeting                                                                                                | ASTM F2320       |
| Safety Signs and Tags                              | Series of Standards for Safety Signs and Tags                                                                                                        | ANSI Z535        |
| Shield Performance on Live Line Tool               | Standard Test Method for Determining the Protective Performance of a Shield Attached on Live Line Tools or on Racking Rods for Electric Arc Hazards  | ASTM F2522       |
| Temporary Protective Grounds — In-service Testing  | Standard Specification for In-Service Test Methods for Temporary Grounding Jumper Assemblies Used on De-energized Electric Power Lines and Equipment | ASTM F2249       |
| Temporary Protective Grounds — Test Specification  | Standard Specification for Temporary Protective Grounds to Be Used on De-energized Electric Power Lines and Equipment                                | ASTM F855        |

# Label Electrical Systems




# NFPA 70E – 2021 Edition

## Note: 2024 coming soon



# 2021 Key Provisions



Number One Priority



PPE




Circuit Breakers



Training



Attendant



Risk Reduction Methods



Battery Safety



Electrical Safety Program



Capacitor Safety



Non-Contact  
proximity test  
instruments

# 2021 Key Provisions

## Restructuring of Article 110 General Requirements

### 2018 Edition

- **110.1 Electrical Safety Program**
- **110.2 Training Requirements**
- **110.3 Host and Contractor Responsibilities**
- **110.4 Test Instruments and Equipment**
- **110.5 Portable Plug-and-Cord-Connected Equipment**
- **110.6 Ground Fault Circuit Interrupter Protection**
- **110.7 Overcurrent Protection Modification**

### 2021 Edition

- **110.1 Priority (moved from 105.4)**
- **110.2 General (moved from 120.2(A))**
- **110.3 Electrical Safe Work Condition**
- **110.4 Energized Work (moved from 130.2(A))**
- **110.5 Electrical Safety Program**
- **110.6 Training Requirements**
- **110.7 Host and Contractor Responsibilities**
- **110.8 Test Instruments and Equipment**
- **110.9 Portable Plug-and-Cord-Connected Equipment**
- **110.10 Ground Fault Circuit Interrupter Protection**
- **110.11 Overcurrent Protection Modification**
- **110.12 Equipment Use (New Article)**

# 2021 Key Provisions

Article 110.1 Priority (Formerly Article 105.4):

**Hazard elimination** shall be the priority in the implementation of safety-related work practices.

**Informational Note 1:** *Elimination is the risk control method listed first in the hierarchy of risk control identified in 110.5(H)(3). See Annex F for examples of hazard elimination.*

**Informational Note 2:** *An electrically **safe work condition** is a state wherein all hazardous electrical conductors or circuit parts to which a worker might be exposed are placed and maintained in a deenergized state, for the purpose of temporarily eliminating electrical hazards. See Article 120 for requirements to establish an electrically safe work condition for the period of time for which the state is maintained. See Informative Annex F for information regarding the hierarchy of risk control and hazard elimination.*

**Electrically Safe Work Condition Policy** Policy must comply with Article 110.3 (electrical Safe Work Condition)

**LOTO Program** – Company ESP must include or have reference to your LOTO program


#### **Risk Assessment Procedure**

Identifying when a second person could be required

**Responsibilities/Documentation** – On multiple employer work sites safety is a shared responsibility (Article 110.7 (C))

**Type of Training** - Classroom training can now include interactive web- based training

#### **Additional Training and Retraining**



**Article 110.6(A)(3) Additional Training and Retraining:** An expansion on the concept of training and whether it is material covered before or if it is something new to the trainee in which it would be classified as additional or supplemental training not covered prior.

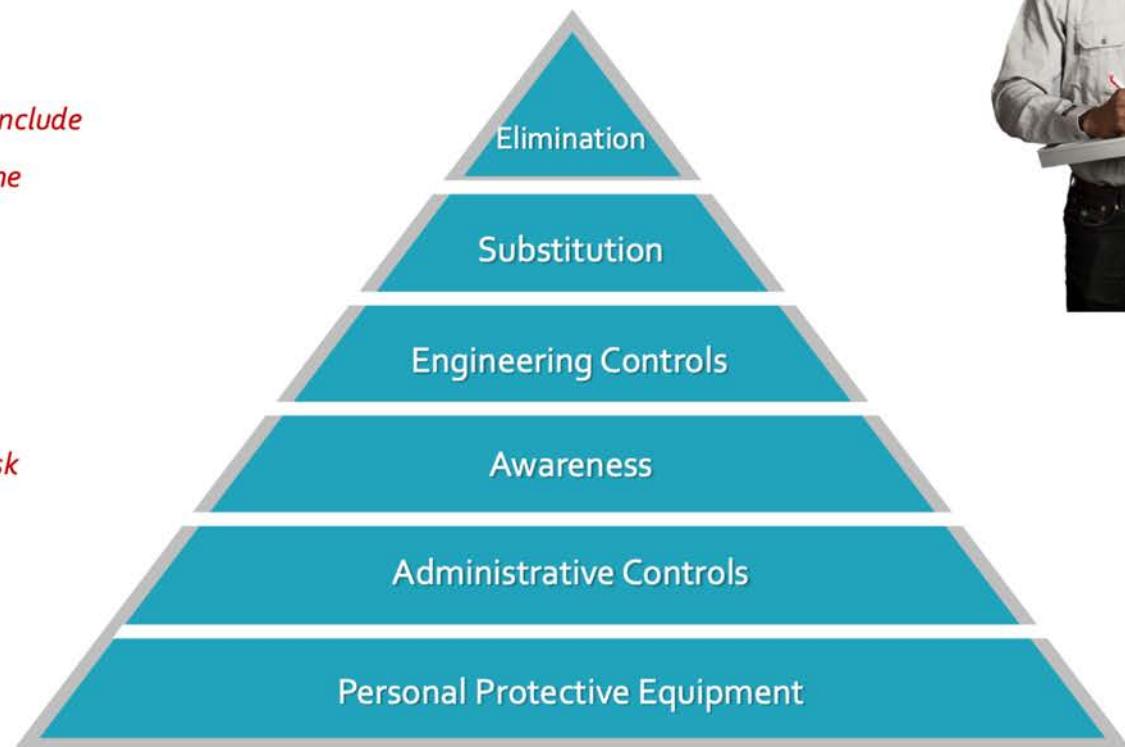
**Article 110.6(A)(4) Type of Training**



**Informational Note:** *Classroom training can include interactive electronic or interactive web-based training components.*

## Article 110.7 Host and Contractor Employer's Responsibilities.

New Informational Note to 110.7: On multi-employer worksites (in all industry sectors), more than one employer can be responsible for identifying hazardous conditions and creating safe work practices.




## Article 110.5 (H)(1) Elements of a Risk Assessment Procedure

**Informational Note 1:** Risk assessment procedure could include identifying when a second person could be required and the training and equipment that person should have.  
(First Aid, CPR, Safe Release of Victims)



**Informational Note 2:** For more information regarding risk assessment and the hierarchy of risk control, see Informative Annex F for examples of risk reduction methods.



Examples given in Table F.3

Annex F Section



**Substitution** – Less hazardous equipment, system or energy, (reduce energy by replacing 120V control circuitry with a 24 Vac or Vdc control circuitry) (place controls on the outside)

**Engineering** – Guard ( Physically obstruct) energized electrical conductors and circuit parts to reduce the likelihood of electrical contact or arcing faults ,remote operators (Barrier on, line side/ primary side)



## Job Safety Plan Checklist

TO BE COMPLETED BY AN ELECTRICALLY QUALIFIED PERSON:

(1) Description of the job and the electrical hazards associated with each task:

---

---

(2) Can electrical work be performed de-energized (Y/N)

(3) Is the work exempt from an EEWP? (voltage measuring, troubleshooting, IR, ultra sound (Y/N)

(4) Was absence of voltage verified with a test instrument, if de-energized (Y/N)

(5) Is an EEWP (Energized Electrical Work Permit) required to be filled out? (Y/N)

(6) Electrical equipment marked with an arc flash label? (Y/N)

(7) Results of the Shock Risk Assessment

- Electrical System Nominal Voltage \_\_\_\_\_
- Limited Approach Boundary Distance \_\_\_\_\_
- Restricted Approach Boundary Distance \_\_\_\_\_
- Is Shock Boundary marked off with barricades /warning tape? (Y/N)
- **PPE Required to perform Work**
- Rubber Insulated Gloves with Leather Protectors \_\_\_\_\_
- Insulated tools used in restricted boundary (Y/N)
- Insulating blanks to be used for job task? (Y/N)

(9) Special precautions that may be necessary: (Standby person necessary, capacitors need to be discharged)

(10) Necessary energy sources controls: (LOTO completed? any secondary energy source used? electrical disconnect located?)

---

(11) Was a pre-job safety briefing performed with all workers involved? (Y/N)

I acknowledge that a pre-job briefing has been performed and I understand this job safety plan checklist and will comply with all the safety requirements.

Electrically Qualified Person Signature:

\_\_\_\_\_ Date: \_\_\_\_\_ / \_\_\_\_\_ / \_\_\_\_\_

Additional Workers involved Signatures

\_\_\_\_\_ Date: \_\_\_\_\_ / \_\_\_\_\_ / \_\_\_\_\_

---

|                                                                                                                                                                                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Company Name</b>                                                                                                                                                                                                     |  |
| <b>ENERGIZED ELECTRICAL WORK PERMIT</b>                                                                                                                                                                                 |  |
| <b>PLETED BY THE REQUESTER:</b><br>All equipment to be worked on and their location<br><br>Formed<br><br>must be performed in an energized condition                                                                    |  |
| Form: _____<br><br><b>ED BY THE ELECTRICALLY QUALIFIED PERSON DOING THE</b><br>I employed<br><br><b>MENT:</b><br>Age: _____<br>Distance: _____<br>Personal protective equipment required for the work to be performed   |  |
| _____ calcium OR the flash PPE category<br>Personal protective equipment required for the work to be performed                                                                                                          |  |
| and persons from the work area<br><br>discussion of key job-related hazards:<br><br>Me _____<br><br>_____ Date: _____ / _____ / _____<br><br>_____ Date: _____ / _____ / _____<br><br>_____ Date: _____ / _____ / _____ |  |
| Rating of work to the Safety Department for filing                                                                                                                                                                      |  |

## 130.7(C)(1) Personal Protective Equipment Informational Note

**Informational Note:** Where the estimated incident energy exposure is greater than the arc rating of commercially available arc rated PPE, then for the purpose of testing for the absence of voltage, the following examples of risk reduction methods could be used to reduce the likelihood of occurrence of an arcing event or the severity of exposure:



## Examples of Risk Reduction Methods

### Example I

Use a non-contact proximity test instrument or measurement of voltage on the secondary side of a low voltage transformer mounted in the equipment before using a contact test instrument to test for the absence of voltage below 1000 volts



### Example II

- If equipment allows, observe visible air gaps between equipment conductors and circuit parts and the electrical source supply

### Example III

- Increase the working distance
- Use current limiting devices within the system design to reduce the incident energy level.
- CB put in maintenance mode



Table 130.5(G) & Table 130.7 (C)(15)(c)



**For footwear:** Footwear other than leather or dielectric shall be permitted to be used provided it has been tested to demonstrate no ignition, melting, or dripping at the estimated incident energy exposure.



**For Outerwear “Safety Vests”:** The arc rating of outer layers worn over arc rated clothing as protection from the elements or for other safety purposes, and that are not used as part of a layered system, shall not be required to be equal to or greater than the estimated incident energy exposure.



**Definition Changed:** (The words hood, and sock removed)

**New Definition:**

An arc rated head-protective fabric that protects the neck and head except for a small portion of the facial area.

**New Informational Note:**

Some balaclava designs protect the neck and head area except for the eyes .....while others leave the eyes and nose area unprotected.

## **NEW Table 130.7(C)(7)(a)**



Glove Class (oo), (o), (1) etc.

Maximum Voltage use ac & dc

Minimum distance between Rubber glove and leather protector



*Installation of new a circuit breaker or switch or completion of maintenance ex:(bolts tightened, parts replaced)*



**Table 130.5(C)**

**Task:**

Operation of a CB or switch the first time after installation or completion of maintenance in the equipment

**Equipment Condition:**

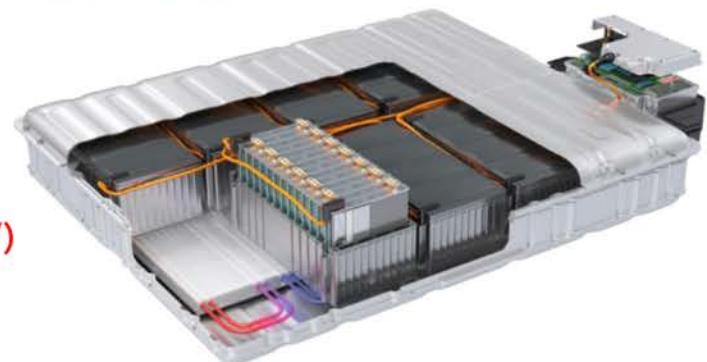
Any

**Likelihood of an arc flash occurrence**

Yes

Article 130.5 moved to  
Article 110.4 (D)




Article 130.5 Information Note: No 2 :

Inadequate maintenance of electrical equipment can result in increased opening time of overcurrent protective device increasing the incident energy.

## Assessing Hazards Associated with Work on Batteries Annex F

### Flow Chart

- System Voltage 100 volts or above
- Can batteries be segmented (put into separate groups to get below 100V)
- Arc flash risk assessment completed
- Arc flash risk assessment must be completed by an engineer
- Wear appropriate PPE for arc flash and shock protection



# PPE – The Last Line of Defense But, Necessary for this Hazard



# Arc Flash Rated Face Shield



2008.02.26





réutilisables, avec cordon  
Tapones reutilizables  
con cordón para los oídos

■ El diseño patentado permite  
una colocación sencilla y los  
hace más cómodos

■ Corded Design Prevents  
Lost Earplugs

Le cordon prévient la perte  
des bouchons d'oreille

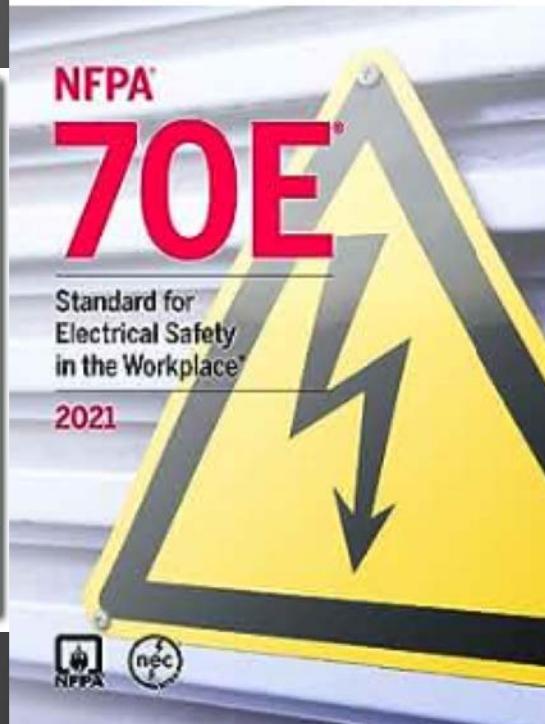
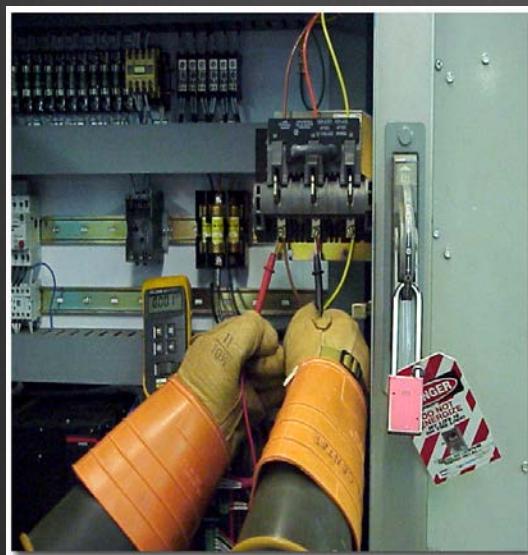
Su diseño con cordón evita  
que se pierdan los tapones

NRR 25 dB

AOSafety

1  
pair  
paire  
par

2008.02.26




**This is closer to what it should look like!**

**Can you find the shortcoming of this PPE for a Hazard Classification 2 ?**

**(480/277 VAC)**



# NFPA 70E Electrical Safety, Arc Flash/Blast