
An Introduction to Piping & Instrumentation Drawings (P&IDs)

Part 1: What is a P&ID?

Presented by: ETTA, OSH Division, 919-807-2875

For Public Official's Use Only

What are P&IDs?

- For thousands of years, pictures have been used to convey information
- P&IDs are no different

What are P&IDs used for?

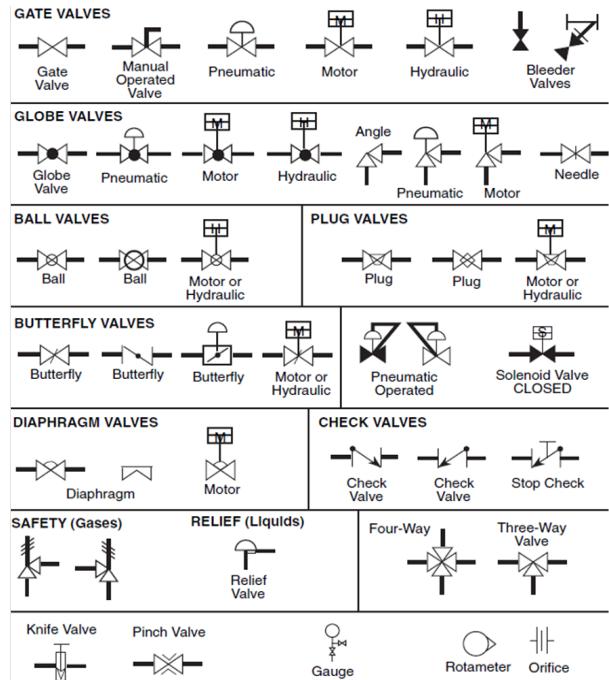
- Act as the definition of the process from which all engineering, fabrication, construction and operation is based.
- Serve as reference for Process Safety Information (PSI) in Process Safety Management (PSM).

P&IDs should do the following:

- Provide a clear and concise illustration of all equipment, pipes, valves, instruments, sensors, etc.
- Provide information to assist in analyzing process hazards, safeguards and potential faults so that all kinds of errors are minimized, ideally eliminated.

P&IDs should do the following:

- Support development of operating and maintenance procedures.
- Serve as an as-built record of the process so that changes can be planned safely and effectively using Management of Change (MOC).


What do P&IDs cover?

- P&IDs can cover the following:
 - Major and minor equipment
 - Valves
 - Instrumentation
 - Stand-alone controllers
 - Buttons
 - Motors and drives
 - Limit and point devices
 - Piping
 - Virtual devices

Lead Sheets

- Comparable to a Legend on a map
- The lead sheets of the company's P&IDs, allow you to quickly track down the meaning of a pipe service label or some other obscure symbol.

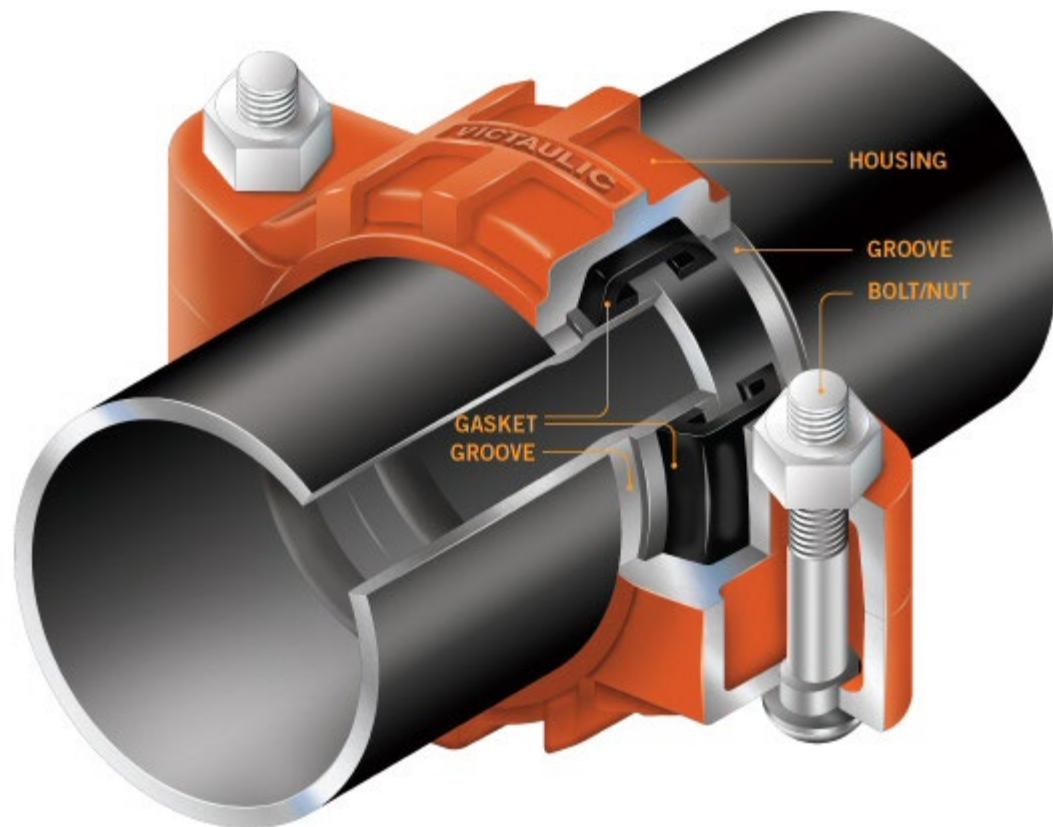
For Public Official's Use Only

Support Documents

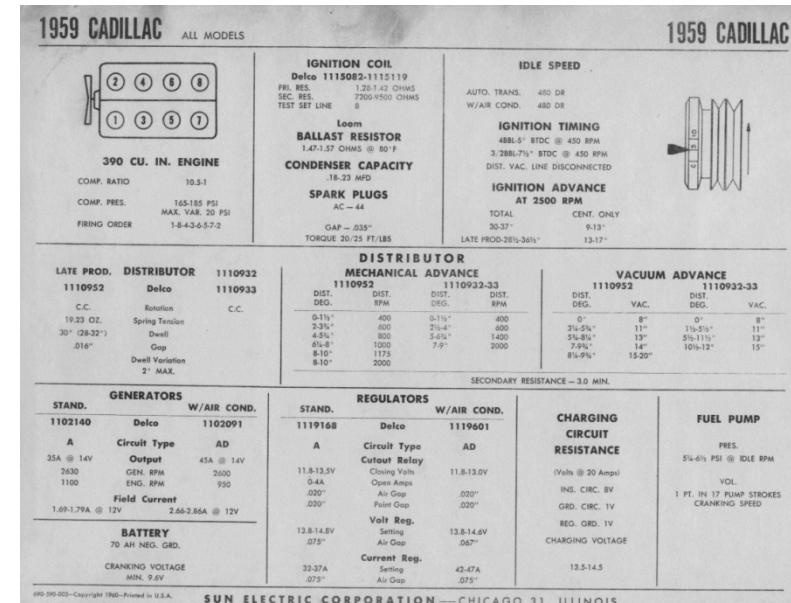
29 CFR 1910.147

- Common documents that serve vital support functions to P&IDs include:
 - Process Flow Drawings
 - Piping and material specifications
 - Equipment and instrumentation specifications
 - Functional/process control documents

Process Flow Drawings


- Root of all P&IDs
- Typically the first drawings when developing a process
- Illustrate the general plant streams, major equipment and key control loops
- Provide detailed mass/energy balance data along with stream composition and physical properties

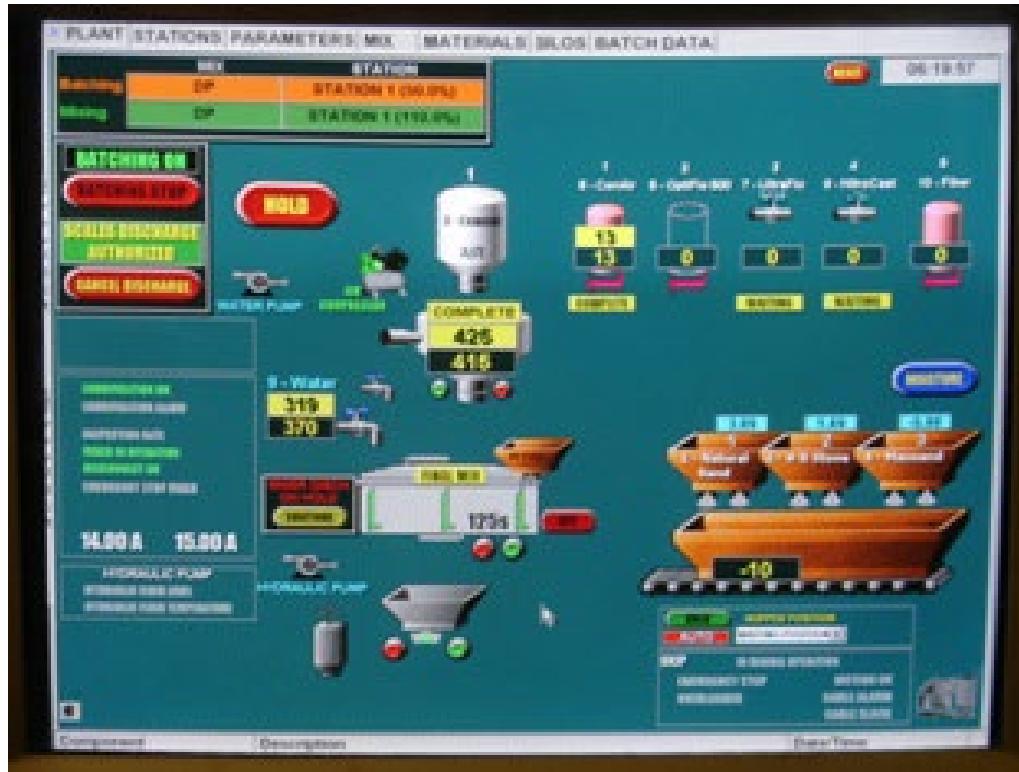
Piping and material specifications


- Details of construction, gaskets, bolts, fittings, etc.

Equipment and instrumentation specifications

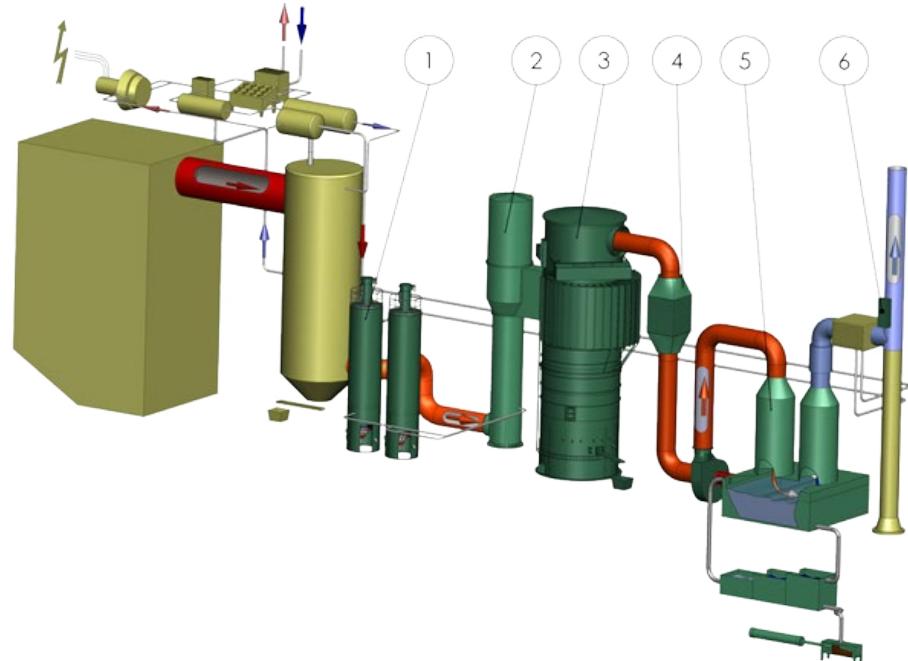
- CAD software used to produce P&IDs can create "smart" drawings

- They can incorporate specifications, standards and details that go into the design


This chart provides technical specifications for the 1959 Cadillac All Models. It includes sections for the 390 CU. IN. ENGINE, IGNITION COIL, LATE PROD. DISTRIBUTOR, IGNITION TIMING, IGNITION ADVANCE AT 2500 RPM, VACUUM ADVANCE, GENERATORS, REGULATORS, CHARGING CIRCUIT RESISTANCE, and FUEL PUMP. The chart also features a diagram of the engine's ignition coil and a drawing of the distributor.

1959 CADILLAC ALL MODELS	
	IGNITION COIL Delco 1115082-1115119 FBI. RES. 1.28-1.42 OHMS SEC. RES. 7.200-950 OHMS TEST SET LINE 8
390 CU. IN. ENGINE COMP. RATIO 10.5:1 COMP. PRES. 165-185 PSI MAX. VAR. 20 PSI FIRING ORDER 1-8-4-3-6-5-2	LOOM BALLAST RESISTOR 1.47-1.57 OHMS @ 80°F CONDENSER CAPACITY 18-22 MFD SPARK PLUGS AC - 44 GAP - .035" TORQUE 20-25 FT/LBS
IGNITION COIL Delco 1115082-1115119 FBI. RES. 1.28-1.42 OHMS SEC. RES. 7.200-950 OHMS TEST SET LINE 8	IDLE SPEED AUTO. TRANS. 480 DR W/AIR CONN. 480 DR
IGNITION TIMING 488L-5° BTDC @ 450 RPM 3,288.7% BTDC @ 450 RPM DIST. VAC. LINE DISCONNECTED	IGNITION ADVANCE AT 2500 RPM TOTAL 30-37° CENT. ONLY 9.13° LATE PROD. 20%-36% 13-17°
LATE PROD. DISTRIBUTOR 1110952 Delco 1110932 C.C. Rotation C.C. 19.23 OZ. Spring Tension 30° (28-32°) Dwell .016" Gap Dwell Variation 2° MAX.	DISTRIBUTOR MECHANICAL ADVANCE 1110952 1110932-33 DIST. RPM DIST. RPM 0-15° 400 0-15° 400 2-3% 600 21/4-4° 600 4-2% 800 3-1/2-4° 1400 61/4-8° 1000 7-9° 2000 8-10° 1175 8-10° 2000
VACUUM ADVANCE 1110952 1110932-33 DIST. DEG. DIST. DEG. 0° 8° 0° 8° 31/4-51/4° 11° 11/2-51/4° 11° 31/2-51/2° 13° 51/2-111/2° 13° 7-9/16° 14° 101/2-12° 13° 81/4-91/4° 15-20°	SECONDARY RESISTANCE - 3.0 MIN.
GENERATORS 1102140 Delco 1102091 A Circuit Type AD Output 45A @ 14V 2630 GEN. RPM 2600 1100 ENG. RPM 950 Field Current 2.66-2.86A @ 12V	REGULATORS 1119168 Delco 1119601 A Circuit Type AD Cutout Relay Closing Volts 11.8-13.0V Opens Amps 0.4A 0.020" Air Gap 0.020" Field Gap Volt Reg. Setting 13.8-14.6V Air Gap .067" Current Reg. Setting 13.8-14.6V Air Gap .075" Pres. (Volts @ 20 Amps) Ins. Circ. 8V Grd. Circ. 1V Reg. Grd. 1V Charging Voltage
BATTERY 70 AH NEG. GRD. CRANKING VOLTAGE MIN. 9.5V	CHARGING CIRCUIT RESISTANCE (Volts @ 20 Amps) Ins. Circ. 8V Grd. Circ. 1V Reg. Grd. 1V Charging Voltage
FUEL PUMP PRES. 51/4-61/2 PSI @ IDLE RPM VOL. 1 PT. IN 17 PUMP STROKES CRANKING SPEED	

Functional/process control documents


- Describes plant operations

How are P&IDs organized?

- Can vary greatly from company to company
- Usually broken down into logical segments
 - Easier to develop
 - Easier to understand
 - Easier to change

Some weaknesses with P&IDs

- Not to Scale
- Not Geometrically Accurate
- Color Blind
- Not Definitive
- Not Drawn Consistently

P&IDs as a Relational Database

- Contains collections of similar objects with unique tags for easy identification
- Structure lends itself to additions, deletions, changes, etc
- Contains metadata that can provide much more detail

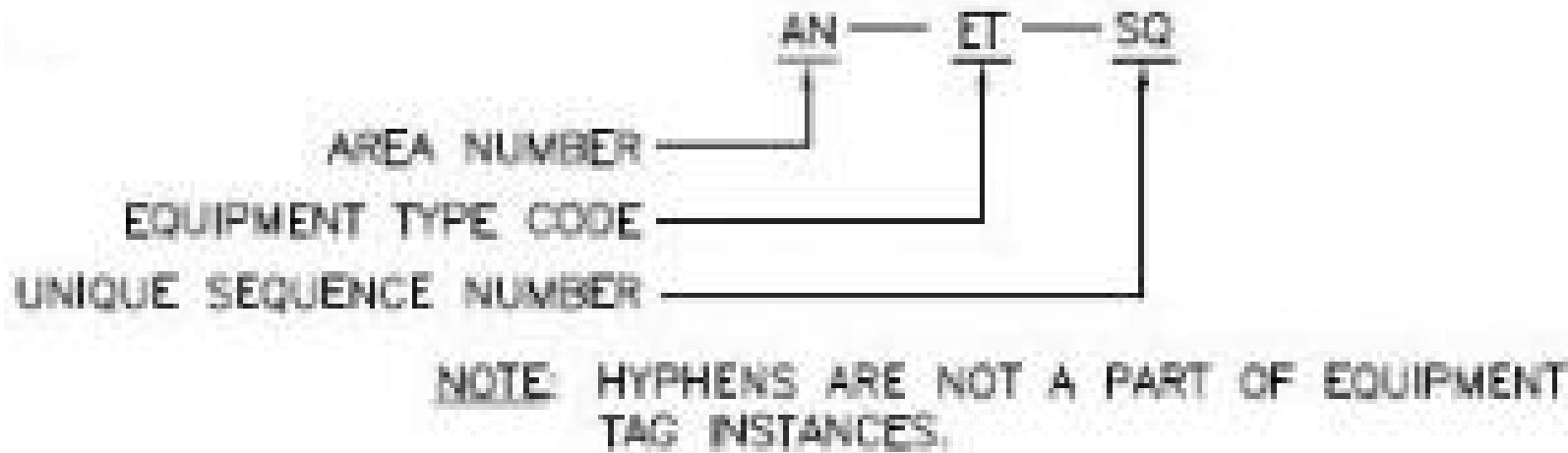
P&IDs as a Living Document

- Constant change in the form of:
 - Operational changes
 - Capacity/Production changes
 - PSM Audit Review

An Introduction to Piping & Instrumentation Drawings (P&IDs)

Part 2: Reading a P&ID?

Presented by: ETTA, OSH Division, 919-807-2875



For Public Official's Use Only

Tag Numbering System

EQUIPMENT TAG FORMAT

Note: These should always be prominently displayed.

Area Number (AN)

AREA NUMBERS (PROJECT SPECIFIC)

1 - TANK FARM

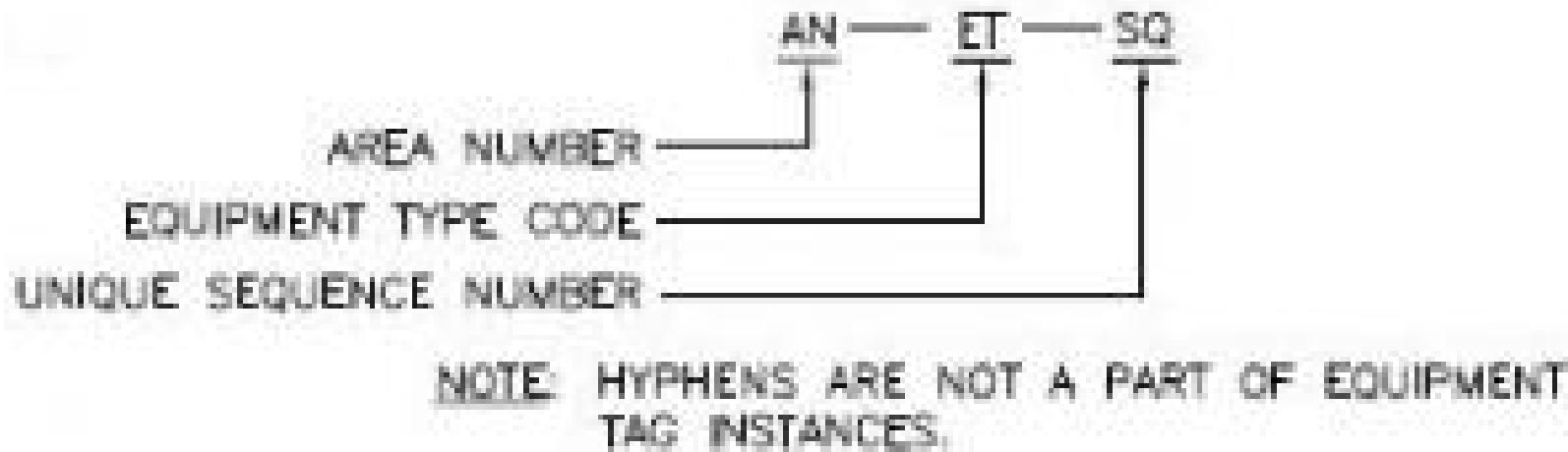
2 - TRAIN 1

3 - SOLIDS DEWATERING

4 - TRAIN 2

5 - VAPOR HANDLING SYSTEM

Equipment Types (ET)

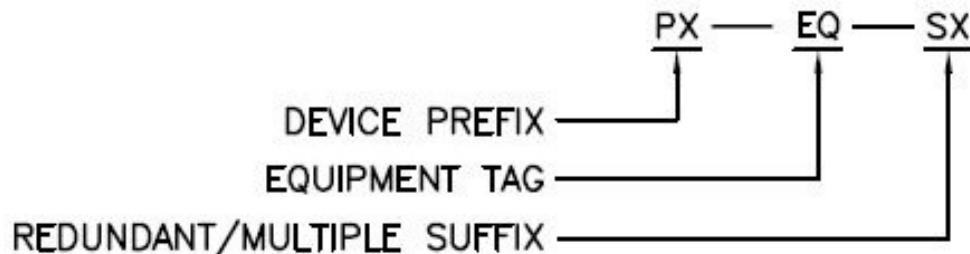

EQUIPMENT TYPE CODES

- 1— FLUID TRANSPORT (BLOWERS, COMPRESSORS AND ALL TYPES OF PUMPS)
- 2— SOLIDS TRANSPORT (BELT AND SCREW CONVEYORS, FEEDERS, ETC.)
- 3— PHYSICAL SEPARATION (PHASE SEPARATION EQUIPMENT, FILTERS, SCREENS, GRAVITY SEPARATORS, CENTRIFUGES, MICRO/ULTRAFILTERS, ETC.)
- 4— MIXERS (AGITATORS, IN-LINE MIXERS, SHREDDERS, BLENDERS, ETC.)
- 5— HEAT TRANSFER (HEAT EXCHANGERS, HEATERS, COOLING TOWERS, BURNERS, ETC.)
- 6— MASS TRANSFER (AD/ABSORBERS, ION EXCHANGE, SCRUBBERS, STRIPPERS, COLUMNS, EVAPORATORS, ETC.)
- 7— CONTAINMENT (TANKS, VESSELS, PITS, SUMPS, SILOS, ETC.)
- 8— REACTORS (CHEMICAL REACTORS OR PRECIPITATORS, CRYSTALLIZERS, ETC.)
- 9— VENDOR PACKAGES & MISC. (PREFABRICATED SYSTEMS FROM 3RD PARTY SUPPLIERS, SPECIALTY EQUIPMENT UNCLASSIFIED ELSEWHERE)

Sequence Numbering (SQ)

EQUIPMENT TAG FORMAT

Tag Number Examples:



- 1101 –
 - The first pump in the tank farm area.
- 1701 –
 - The first tank in the tank farm area.
- 1405 –
 - The fifth mixer in the tank farm area.
- 2901 –
 - A vendor package in the Train 1 area.

Instrument Loop Numbers

INSTRUMENT/DEVICE TAGS

NOTE: HYPHENS ARE NOT REQD BETWEEN PX AND EQ.

REDUNDANT/MULTIPLE SUFFIX RULES:

1. UTILIZE SEQUENTIAL NON-HYPHENATED ALPHABETIC SUFFIXES FOR REDUNDANT DEVICES.
2. FOR MULTIPLE ITEMS OF SAME TYPE, EMPLOY A SEQUENTIAL, HYPHENATED NUMERIC SUFFIX.

Example Loop Tags

PI1101

A pressure indicator on the discharge of the first pump in the tank farm area.

LT1701

A level transmitter on the first tank in the tank farm area.

IT1405

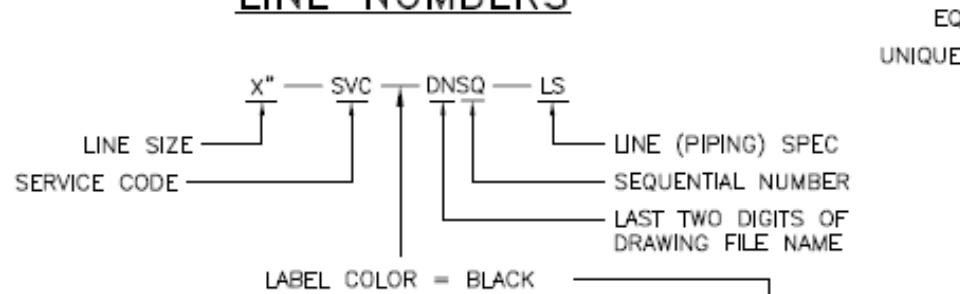
A current transmitter (for the motor) on the fifth agitator in the tank farm area.

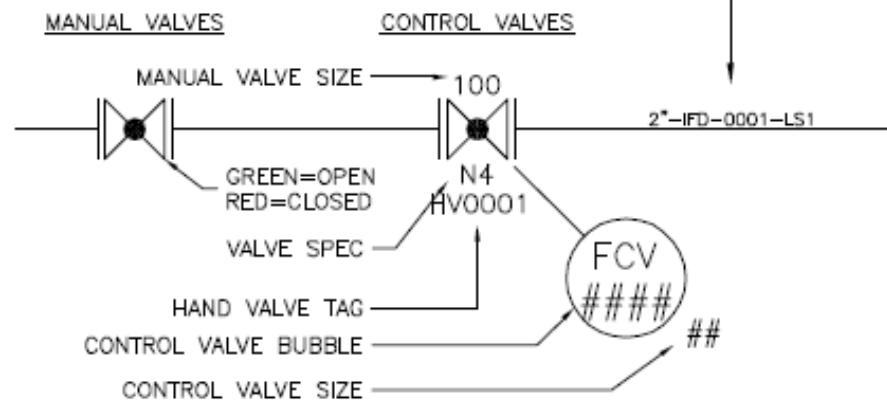
AE1701A

A redundant analyzers on the first tank in the tank farm.

XV1701-1

An actuated valve on the first tank in the tank farm area.




For Public Official's Use Only

Line Numbers

LINE NUMBERS

VALVE TAGS

Line Numbers

X"--SVC--ET:SQ--LS

X" - the nominal size of the pipe

SVC - the service code for the material that normally flows in the line

ET:SQ - a unique line tag that includes two parts, the equipment tag from which the line originates followed by a unique sequential number

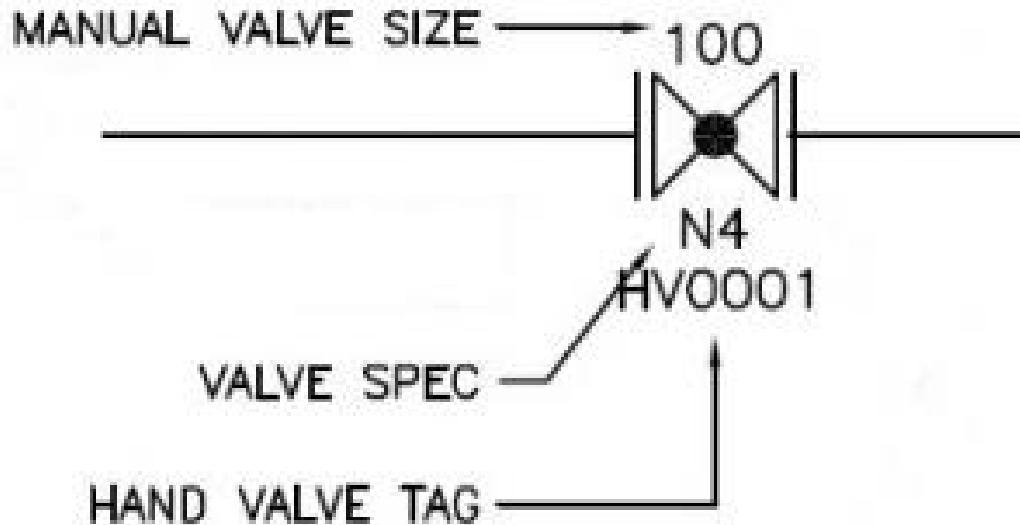
LS -line specification for the pipe, including class and material type, valves etc.

Fluid Service Codes (SVC)

FLUID SERVICE CODES

ALM - ALUMINUM SULFATE	NAG - NATURAL GAS
AMN - AMMONIUM NITRATE	NIA - NITRIC ACID
AMH - AMMONIUM HYDROXIDE	N2 - NITROGEN
ABF - AMMONIUM (Bi)FLUORIDE	OIL - OIL (GENERAL USE)
AMS - AMMONIUM SULFATE	PAR - PROCESS AIR
ASO - ACID SOLUBLE ORGANICS	PFD - POLYMER FEED
BAR - BACKWASH AIR	PHA - PHOSPHORIC ACID
CAF - CALCIUM FLUORIDE	KF - POTASSIUM FLUORIDE
CAR - COMPRESSED AIR	KOH - POTASSIUM HYDROXIDE
CBW - CLEAN BACKWASH WATER	PSL - PROCESS SLURRY/SLUDGE
CFD - CAUSTIC RAW FEED (GEN. USE)	PVP - PROCESS VAPOR
CO2 - CARBON DIOXIDE	PWR - POTABLE WATER
CHC - CALCIUM HYPOCHLORITE	SAH - SULFURIC ACID, >75%
CL2 - CHLORINE	SAL - SULFURIC ACID, <75%
DBW - DIRTY BACKWASH WATER	SHC - SODIUM HYPOCHLORITE
DRN - PROCESS DRAIN	SOC - SODIUM CARBONATE
DSL - DIESEL FUEL	SOH - SODIUM HYDROXIDE
EFF - EFFLUENT (GENERAL USE)	SLP - STEAM, <125#
FEC - FERRIC CHLORIDE	SMB - SODIUM METABISULFITE
FEW - FILTER EFFLUENT WATER	STM - STEAM, 125-220 #
FIW - FILTER INFLUENT WATER	SNY - SANITARY SEWER
FOL - FUEL OIL	STO - STORM DRAIN
HCL - HYDROCHLORIC ACID	SWR - SERVICE WATER
HF - HYDROFLUORIC ACID	TFL - THERMAL FLUID
HPX - HYDROGEN PEROXIDE	UAR - UTILITY AIR
IAR - INSTRUMENT AIR	UWR - UTILITY WATER
IFD - INDUSTRIAL RAW FEED	VNT - VENT (GENERAL USE)
LSY - LIME SLURRY	WOL - WASTE OIL
MEL - METHANOL	WWR - WASTEWATER (GENERAL USE)

Line Specifications (LS)



- Line specifications cover all the details related to the piping system used to handle the fluid for the line.
- Should include all details regarding
 - material of construction
 - valves and trim
 - Gaskets
 - Fittings
 - T/P limits

Hand Valves (HV)

MANUAL VALVES

Examples:

V0001 - The first hand valve on P&ID D100

V1205 - The fifth hand valve on P&ID D102

Valve Symbols

VALVE SYMBOLS

|○| — BALL

|↗| — BUTTERFLY

|↙| — CHECK, GENERAL

|↖| — CHECK, SPLIT DISK

⊗ — DIAPHRAGM

⊗ — GATE

⊗ — GLOBE

□ — KNIFE GATE

⊗ — NEEDLE

⊗ — PINCH

|◊| — PLUG

↗ — ANGLE

⊗ — THREE-WAY
(Ball type shown)

↗ — PRESSURE RELIEF

↗ — PRESSURE REDUCING
(EXTERNAL SENSOR)

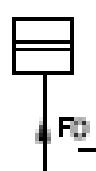
↗ — PRESSURE REDUCING
(INTERNAL SENSOR)
HAND WHEEL ADJ.
SETPOINT

↗ — PRESSURE RELIEF
VACUUM VENT

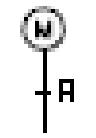
NOTE: VALVE COLOR DURING TYPICAL OPERATION IS
GREEN=OPEN AND RED=CLOSED.

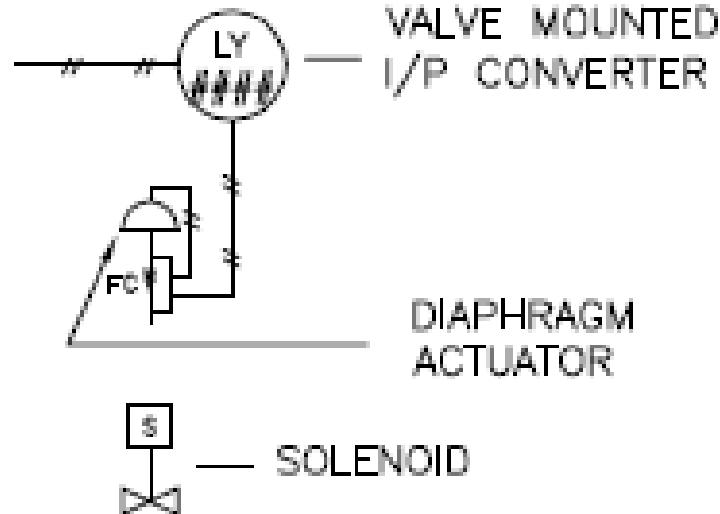
Line Symbols

LINE SYMBOLS


- MAJOR PROCESS PIPING
- MINOR/INSTRUMENT PIPING
- — — EXISTING PIPING
- — — — ELECTRICAL SIGNAL
- x — x — CAPILLARY TUBING
- o — o — SOFTWARE OR DATA LINK
- * — * — MECHANICAL LINK
- // — // — PNEUMATIC SIGNAL/PIPEING
- L — L — HYDRAULIC SIGNAL
- ~ — ~ — GUIDED WAVE
- ~ ~ ~ UNGUIDED WAVE

NOTE: PROCESS LINES ARE COLOR-KEYED
IN ACCORDANCE WITH THE PFD LINE
COLOR KEY TABLE.


Control Valve ID



CONTROL VALVE ACTUATORS

 — PISTON WITH SPRING RETURN
FO — FAIL OPEN

 — PISTON
FC — FAIL CLOSED

 — ELECTRIC FAIL INDETERMINATE

Primary Flow Elements

PRIMARY FLOW ELEMENTS

	ORIFICE PLATE WITH FLANGE PIPE TAPS OR VENA CONTRACTA		ORIFICE PLATE IN QUICK-CHANGE FITTING		AVERAGING PITOT TUBE
	TURBINE OR PROPELLER TYPE		PITOT TUBE		POSITIVE DISPLACEMENT
	VENTURI TUBE		ROTAMETER		VORTEX SENSOR
	FLOW NOZZLE		MAGNETIC		WEIR (V-NOTCH SHOWN)
	ULTRASONIC (DOPPLER)		CORIOLIS		FLUME
	TRANSIT TIME				

Instrument Letter ID

INSTRUMENT LETTER IDENTIFICATION				
	FIRST-LETTER		SUCCEEDING-LETTERS	
	MEASURED OR INITIATING VARIABLE	MODIFIER	READOUT OR PASSIVE FUNCTION	OUTPUT FUNCTION
A	ANALYZER		ALARM	
B	BURNER		USER'S CHOICE	USER'S CHOICE
C	USER'S CHOICE	CONTROL		CONTROL
D	USER'S CHOICE	DIFFERENTIAL		CLOSE
E	VOLTAGE		PRIMARY ELEMENT	
F	FLOW	RATIO		
G	USER'S CHOICE		GLASS	
H	HAND			HIGH
I	CURRENT		INDICATE	
J	POWER	SCAN		
K	TIME			CONTROL STATION
L	LEVEL		LIGHT	LOW
M	USER'S CHOICE	MOMENTARY		MEDIUM
N	USER'S CHOICE		USER'S CHOICE	USER'S CHOICE
O	USER'S CHOICE		ORIFICE	OPEN
P	PRESSURE		POINT TEST CONN.	
Q	QUANTITY	INTEGRATE/TOTALIZE		
R	RADIATION	RELIEF	RECORD	
S	SPEED	SAFETY		SWITCH
T	TEMPERATURE			TRANSMIT
U	MULTI-VARIABLE		MULTI-FUNCTION	MULTI-FUNCTION
V	VIBRATION			VALVE, DAMPER
W	WEIGHT, FORCE		WELL	
X	UNCLASSIFIED	X-AXIS	UNCLASSIFIED	UNCLASSIFIED
Y	EVENT, STATE	Y-AXIS		RELAY, COMPUTE
Z	POSITION	Z-AXIS		DRIVER, ACTUATOR UNCLASSIFIED FINAL CONTROL ELEMENT

INSTRUMENT SYMBOL IDENTIFICATION				
INSTRUMENT FUNCTION (SEE ABOVE TABLE)	LE	#	MAY INDICATE QUANTITY (IF APPLICABLE), TYPE OF DEVICE, APPLICABLE SETTINGS OR OTHER SUPPLEMENTARY DATA	
DEVICE TAG/LOOP NUMBER (SEE D102 FOR DETAILS)	123A			
NOTE:			MODIFIER SUFFIX IS REQ'D WHEN REDUNDANT AND/OR MULTIPLE DEVICES PRESENT IN A COMMON LOOP. REFER TO D002 FOR DETAILS.	

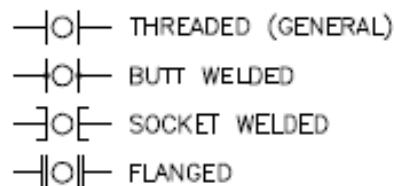
TABLE IS BASED ON ANSI/ISA-5.1-1984 (R1992).

For Public Official's Use Only

Instrument Symbols

INSTRUMENT SYMBOLS

○	— LOCALLY MOUNTED (FIELD)	○○	— INSTRUMENTS SHARING COMMON HOUSING
○—	— FRONT OF PANEL MOUNTED	—	— NOT BY VENTILATION WATER
○—	— LOCAL PANEL MOUNTED	○○○	— PILOT LIGHT
○—	— BACK OF PANEL MOUNTED OR INACCESSIBLE	○○○○	— HOST COMPUTER NOT NORMALLY ACCESSIBLE TO THE OPERATOR
○—	— SHARED DISPLAY FUNCTION NOT NORMALLY ACCESSIBLE TO THE OPERATOR	○○○○○	— HOST COMPUTER NORMALLY ACCESSIBLE TO THE OPERATOR
○—	— SHARED DISPLAY FUNCTION NORMALLY ACCESSIBLE TO THE OPERATOR	○○○○○○	— RESET
○—	— SHARED DISPLAY FUNCTION REMOTE LOCATION	○○○○○○○	— INTERLOCK
○—	— PLC FUNCTION	○○○○○○○○	— PURGE


Instrument Abbreviations

INSTRUMENT ABBREVIATIONS

AI — ANALOG INPUT	FWD — FORWARD
AO — ANALOG OUTPUT	KT — K-TYPE THERMOCOUPLE
BCD — BINARY CODED DECIMAL	LC — LOCKED CLOSED
C — COMPUTER	LO — LOCKED OPEN
CPT — CONTROL POWER TRANSFORMER	MN — MODBUS NETWORK
DI — DIGITAL INPUT	MS — MOTOR STARTER
DL — DATA LOGGER	NC — NORMALLY CLOSED
DO — DIGITAL OUTPUT	NO — NORMALLY OPEN
FB — FEEDBACK	PLC — PROGRAMMABLE LOGIC CONTROLLER
FC — FAIL CLOSED	PV — PROCESS VARIABLE
FI — FAIL INTERMEDIATE	RSP — REMOTE SETPOINT
FLP — FAIL LAST POSITION	REV — REVERSE
FO — FAIL OPEN	SP — SETPOINT
FP — FILL PORT	EL — ELEVATION
	IAR — INSTRUMENT AIR

CONNECTIONS

Computing Function ID

COMPUTING FUNCTION IDENTIFICATION

Σ	— ADD	\pm	— BIAS	\checkmark	— VELOCITY LIMITER
Σ	— AVERAGE	\div	— DIVIDE	$-K$	— NEGATIVE GAIN
Δ	— DIFFERENCE	$>$	— HIGH SELECTOR	K	— PROPORTIONAL GAIN
$1:1$	— BOOSTER	$<$	— LOW SELECTOR	$2:1$	— PROPORTIONAL
\gg	— HIGH LIMIT	\times	— MULTIPLY	t^n	— TIME FUNCTION
\ll	— LOW LIMIT	\int	— INTEGRATE	$\sqrt[n]{\cdot}$	— ROOT EXTRACTION
$\frac{d}{dt}$	— RATE OF CHANGE	x^n	— EXPONENTIAL	$\frac{\cdot}{\cdot}$	— CONVERT

I/O Symbols

TYPICAL I/O SYBMOLS

- — DIGITAL INPUT
TO PLC
- — DIGITAL OUTPUT
FROM PLC
- — ANALOG INPUT
TO PLC
- — ANALOG OUTPUT
FROM PLC
- — MODBUS
COMMUNICATIONS
- — K-TYPE
THERMOCOUPLE

Thank You For Attending!

Final Questions?

1-800-NC-LABOR
(1-800-625-2267)
www.nclabor.com

For Public Official's Use Only