

CONVERSIONS / FORMULAS / LAWS FOR CHEMISTRY

1 oz.	=	28.34 grams
1 lb.	=	454 grams
1 gram	=	1 cc
1 gallon	=	3.785 liters
1 cu.ft.	=	7.48 gallons
1 liter	=	1000 grams = 1000 cc
1cc	=	1 ml
1 gram	=	1 cc
1 cu. ft.	=	28.2 liters
1 m ³	=	35.3 cu.ft.
1 gallon	=	8.34 lbs. H ₂ O
1 cu.ft.	=	.075 lbs. air
1 cu.ft.	=	62.4 lbs. H ₂ O

Temperature

$$^{\circ}\text{C} = ^{\circ}\text{F} - 32 (5/9)$$

$$^{\circ}\text{F} = ^{\circ}\text{C} (9/5) + 32$$

Absolute Temperature

$$^{\circ}\text{C} + 273 ^{\circ}\text{K} = ^{\circ}\text{K}$$

$$^{\circ}\text{F} + 460 ^{\circ}\text{R} = ^{\circ}\text{R}$$

Air Pressure

$$1 \text{ atmosphere} = 760 \text{ torr} = 760 \text{ mm Hg} = 29.92" \text{ Hg} = 101. \text{ kPa} = " \text{ water}$$

$$\text{psia} = \text{psig} + 14.7 \text{ psia}$$

Water Pressure

$$.433 \text{ psi} / \text{ft. of height}$$

$$62.4 \text{ lbs. / cubic foot of water}$$

Density

The ratio of an objects mass to it's volume

$$\text{density } (\rho) = \text{mass} / \text{volume } (\text{g/ml or g/cc})$$

Water is the reference, it weighs exactly 1 gram / ml @ 20 deg.C.

Specific Gravity

The ratio of an object's density to the density of water. There are no units.

Not all liquids weigh the same.

If a chemical has a s.g. of .70, it means that 1 ml weighs 0.7 grams. It is 30% lighter than water.

Gas Laws

$$PV = nRT \quad (R = 0.0821 \text{ atmosphere liter / mole } ^{\circ}\text{K})$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Boyle's Law - At constant temperature a fixed mass of gas occupies a volume inversely proportional to the pressure exerted upon it.

$$P_1 V_1 = P_2 V_2 \quad \text{Boyle's Law}$$

Charles Law - At constant pressure the volume occupied by a fixed mass of gas is directly proportional to the absolute temperature.

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \quad \text{Charles Law}$$

Avagadro Principle - An equal volume of gas at the same temperature and pressure contains an equal number of molecules (or atoms) per mole of gas.

1 mole of gas = 6.023×10^{23} molecules (atoms)

$$PV = nRT \quad (\text{combining the gas laws and Avagadro's principle})$$

Gas density law - relate density of gas to its pressure and temp.

$$\frac{\rho_1 T_1}{P_1} = \frac{\rho_2 T_2}{P_2} \quad \rho_1 = (\text{gms/cc or gm/ml})$$

Dalton's Law of Partial Pressure

$$P_{\text{total}} = \sum_{i=1}^n P_i = P_1 + P_2 + P_3 + \dots + P_n$$

Standard and Normal Temp. & Press.

STP = Standard Temp. and Pressure (273 °K = 0 °C = 32 °F, 1 atm.)

NTP = Normal Temp. and Pressure (298 °K = 25 °C = 77 °F, 1 atm.)

Engineer's STP = (293 °K = 20 °C = 68 °F, 1 atm.)

Volume

Parts per million (ppm) = 1 part / 10^6 parts

$$\text{ppm} = \frac{(\text{mg} / \text{m}^3)(24.45)}{\text{molec. wt. (grams / mole)}}$$

ppm = mg / liter

$$\text{ppm} = \frac{\text{volume gas}}{\text{volume air}} \times 10^6$$

$$\text{ppm} = \frac{\text{mm Hg gas}}{760 \text{ mm Hg}} \times 10^6$$