
Welding Health Hazards

1910 Subpart Q & 1926 Subpart J

Presented by: Steve Davis, GRM

ETTA, OSH Division, (919) 807-2875

Welding Shield Gas

- Carbon Dioxide
- Argon
- Take care to provide general ventilation
- Provide general ventilation in confined spaces

Welding Carbon Steel

- Iron Oxide Fume is Generated
- PEL: 5 mg/m³ TWA
- PEL Not normally exceeded in open welding
- Can exceed the PEL in Confined Space
- Manganese Fume is Generated
- PEL: 5 mg/m³ Ceiling
- Sampled on a .8 Micron MCEF Filter

Welding Galvanized

- Should Actually not Weld Galvanized
- Zinc Oxide PEL: 15 mg/m³
- Zinc Oxide TLV: 10 mg/m³
- Metal Fume Fever
- Drink Milk at Night if You Do Weld Galvanized
- Sampled on a .8 Micron MCEF Filter

Welding Stainless

- Typical Fumes Generated Include:
- Cadmium, AL: 2.5ug/m3, PEL: 5ug/m3
- Nickel, PEL: 1 mg/m3
- Manganese, PEL: 5 mg/m3
- Chrome, PEL: 0.5 mg/m3
- Sampled on a .8 Micron MCEF Filter

Hexavalent Chrome

1910.1026 & 1926.1126

Hexavalent Chrome

Why is It An Issue Now?

- It was released on February 28th, 2006 Under Court Order, 2006 with a PEL of 5µg/m³
- State Plans Adopted the Standard
- Four Years after the effective date of the standard, all provisions were in effect including engineering controls

What is Hexavalent Chrome?

Hexavalent Chrome

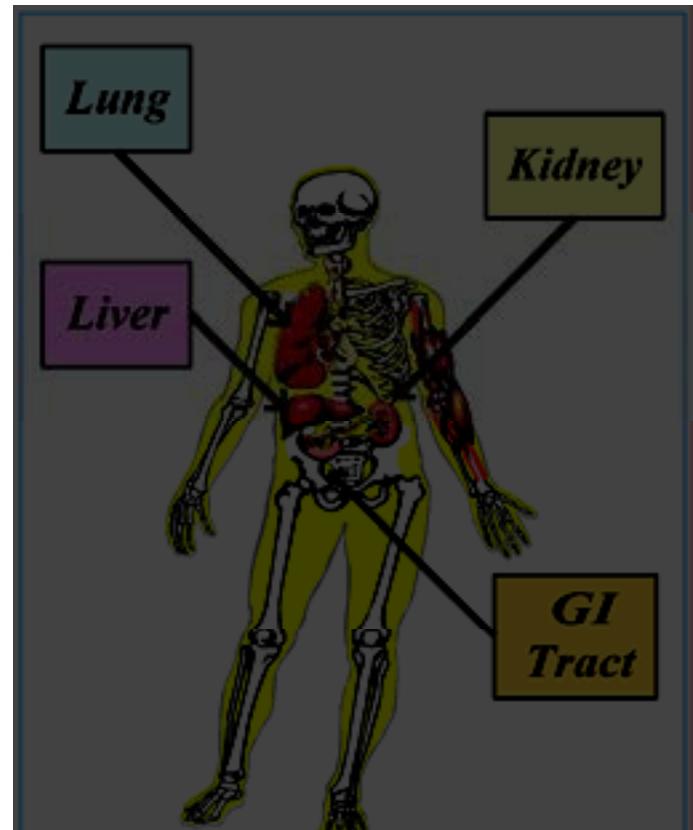
What is Chrome?

- Chromium Occurs in the Environment predominately in:
 - Trivalent State: Occurs Naturally
 - Hexavalent State: Metallic Chromium positive-6 valence (hexavalent) state.

Hexavalent Chrome

Why is It a Problem?

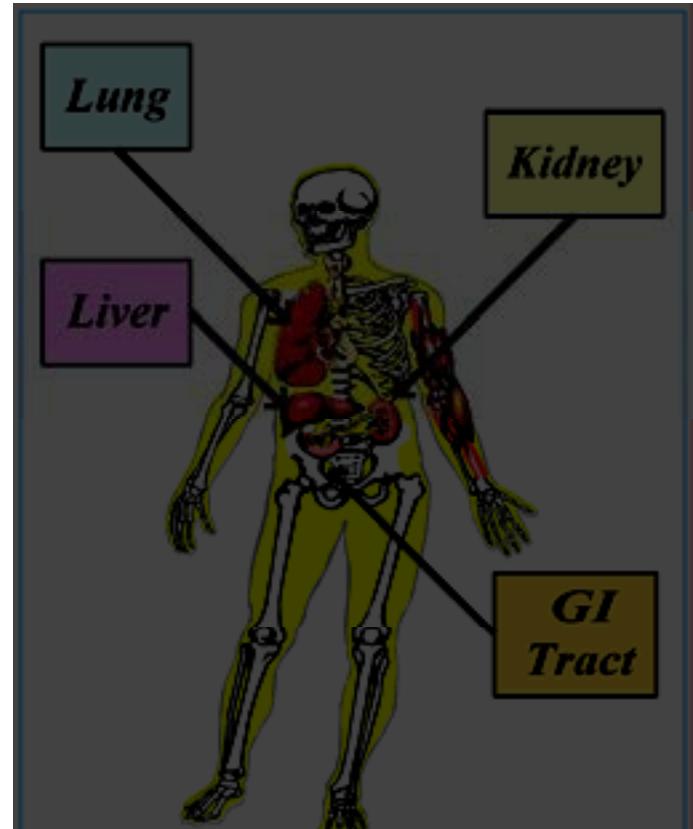
Why is it a Health Hazard?


- NIOSH considers all Cr(VI) compounds to be potential occupational carcinogens
- An increased risk of lung cancer has been demonstrated in workers exposed to Cr(VI) compound... there's more...

Hexavalent Chrome

Why is It a Problem?

- Other adverse health affects include:
 - Dermal irritation
 - Skin ulceration
 - Contact dermatitis
 - Occupational asthma
 - Nasal irritation & ulceration



Hexavalent Chrome

Why is It a Problem?

- Continuing:
 - Perforated nasal septum
 - Nasal cancer
 - Sinus cancer
 - Kidney damage
 - Liver damage

Hexavalent Chrome

How Does It Enter the Body?

- By being inhaled or...
- By being swallowed
- Can enter the body through contaminated cigarettes through inhaling
- Particles of chromium can be swallowed if the dust gets on hands, clothing, or beard, or in food or beverages

Hexavalent Chrome

Where Does It Occur?

- Where Does It Come From:
 - Production of Stainless Steel

Hexavalent Chrome

Where Does It Occur?

- Why an Exposure with Stainless Steel?

Stainless steel is an alloy (304,2205,2550) consisting of:

- carbon (0.03% to .45%)
- chromium (11% to 32%)
- nickel (.60% to 37%)
- molybdenum (.35% to 4.0%)
- smaller amounts of manganese, phosphorous, silicon, sulfur, and copper.

Hexavalent Chrome

Where Does It Occur?

- Where Does It Come From:
 - Chrome Plating
 - » chromic trioxide (chromic acid)
 - » zinc chromate
 - » barium chromate
 - » calcium chromate
 - » sodium chromate
 - » strontium chromate

Hexavalent Chrome

Where Does It Occur?

- Where Does It Come From:
 - Production of Chromate Pigments
 - » lead chromate (chrome yellow)
 - » chrome green
 - » molybdenum orange
 - » zinc chromate
 - » barium chromate
 - » calcium chromate
 - » potassium dichromate
 - » sodium chromate

Hexavalent Chrome

Where Does It Occur?

- Where Does It Come From?

- Textile Dyes:

- » ammonium dichromate
 - » potassium chromate
 - » potassium dichromate
 - » sodium chromate

Hexavalent Chrome

Where Does It Occur?

The most common exposure in General Industry & Construction comes from stainless welding & cutting of painted surfaces (Lead Chromate Paint)

Hexavalent Chrome

Where Does It Occur?

- Stainless Welding Processes Yield:
 - Welding Fume Exposures

Including elements of:

- » Chromium
- » Nickel
- » Cadmium
- » Manganese
- » Hexavalent Chrome

Hexavalent Chrome

Typical Historical Exposure Levels

- Production (Rolling Mills): 3 – 22 µg/m³
- Chrome Plating: 6 – 28 µg/m³
- Chromate Pigment: 2 – 8 µg/m³
- Textile Dying: 1 – 4 µg/m³
- Stainless MIG Welding: 1.2 – 256 µg/m³
- Stainless TIG Welding: 0.5 – 5 µg/m³

Again, stainless welding and cutting of zinc chromate & lead chromate painted surfaces are the Greatest Exposures In Construction

Hexavalent Chrome

Some Understanding of the Science

- When created by welding, hexavalent chrome remains in the hexavalent state for only 72 hours.
- After 72 hours, it reverts back to Chrome III.

The Requirements of the Standard

Hexavalent Chrome

Key Compliance Steps

- Perform a risk assessment of CrVI exposures
 - Review MSDS to determine presence of Cr VI
 - Review past IH samples
 - Assess processes
 - Assess current engineering and administrative controls
 - Quantify CrVI exposure....
 - Based on results - Implement Program

Hexavalent Chrome

Basics of The Standard

- Monitor employee exposure in General Industry
- Establish regulated areas in General Industry when exposures may be expected to exceed the PEL (Regulated Areas not Required in Construction, but may be mandated on Industrial Construction Sites)

Hexavalent Chrome

Basics of The Standard

- Implement engineering and work practice controls to reduce exposures
- Provide respiratory protection in emergencies or when engineering and work practice controls are not feasible or are insufficient
- Provide other protective clothing and equipment as necessary for eye and dermal protection if hazard assessment indicates exposure

Hexavalent Chrome

Basics of The Standard

- Provide hygiene facilities and housekeeping activities in some situations
- Provide medical surveillance for employees experiencing signs or symptoms of CrVI exposure or who are exposed in an emergency
- Train workers about hexavalent chromium hazards
- Use signs and labels to communicate hazards to workers
- Keep records on everything

Hexavalent Chrome

Basics of The Standard

Exceptions:

- Tasks or operations that do not result in exposures above the PEL for 30 or more days per year

Hexavalent Chrome

Basics of The Standard

- How do we address the “Potential for Skin & Eye Exposure”? Do we need it?
 - Welding of stainless creates airborne hexavalent chrome
 - Cutting of lead chromate coated steel creates airborne hexavalent chrome
 - NIOSH stated in a 2003 Study that airborne concentrations of hexavalent chrome over 1 $\mu\text{g}/\text{m}^3$ is considered a contaminated area.

Hexavalent Chrome

Basics of The Standard

- How do we address the “Potential for Skin & Eye Exposure”? Do we need it?
 - If IH sampling results are over 1 $\mu\text{g}/\text{m}^3$ - protection for eye & skin contact may be necessary - research is ongoing.
 - OSHA has stated that employer must perform “Hazard Assessment”
 - OSHA has also stated “Exposure must be reduced or eliminated”

Hexavalent Chrome

Basics of The Standard

How do We Start Complying

Hexavalent Chrome

Quantify the Exposure

- IH sampling must be performed.
- Use the correct sampling procedure
- Cr_{III} and Cr_{VI} cannot be sampled on the same media
- Consult with your laboratory for sampling method and analyzing method

Hexavalent Chrome

Implement Respiratory Protection

- Select respirators based on IH sample data
- Implement all elements of Respiratory Program

Hexavalent Chrome

Evaluate Potential for Skin & Eye Exposure

Perform Hazard Assessment

- Determine potential for skin and eye contact
- Implement program and procedures for protective clothing & eye protection

If Assessment Indicates Exposure...

Hexavalent Chrome

Change Rooms & Hygiene Facilities

- Change rooms
 - separate storage facilities for PPE and street clothes
- Washing facilities
 - Wash hands and face:
 - » at the end of the work shift
 - » prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet

Hexavalent Chrome

Medical Screening

- Must be provided by or under the supervision of a physician or other licensed health care professional (PLHCP)
- Must be performed within 30 days of the initial exposure to hexavalent chrome
- Must be performed annually thereafter

Hexavalent Chrome

Explore Engineering Controls

- Enclosing the process if possible
- Change weld chemistry or process
- Local exhaust ventilation (LEC)
(Lincoln makes a portable HEPA local exhaust system - other mfgs. also supply)
- Gun mounted local exhaust systems
- LEC does not work on MIG welding
(Shield Gas)
- LEC can work on stick welding

Sampling for Hexavalent Chrome

**Let's Use Welding Fume
Sampling as an Example**

How do We Sample for Hexavalent Chrome?

- First, talk with your AIHA accredited laboratory

How do We Sample for Hexavalent Chrome

- Welding Sample:
 - 25mm PVC sample media
 - Under the hood
 - Sample rate is typically 2 LPM
 - Separate morning & afternoon samples are recommended

How do We Sample for Hexavalent Chrome

- Sample on Monday-Thursday (not on Friday)
- Must process and overnight samples to lab (72 hour rule)
- Ask for Results to be emailed

www.shutterstock.com • 42901222

Once the Sample Results are Received

- Evaluate and develop your analysis and report
- Communicate the sample results to the workers in writing within 5 days or receipt

Global Risk Management

Industrial Hygiene Report

Hexavalent Chrome Exposure
ABC Corporation
El Dorado, Kansas

Version 1.1

Last Edited: 9/04/09

Steve Davis
Principal Consultant & Industrial Hygienist

Michelle Dunham
Principal Consultant & Industrial Hygienist
Senior Research Scientist

Results, Analysis & Report

- Determine worker exposure
- Determine engineering controls/options
- Determine sample program
- Determine respiratory protection

Hexavalent Chrome

Evaluate IH Results

If initial Cr(VI) concentration
is:

— Below the AL	Discontinue monitoring
— At or above the AL	<p>Monitor every 6 months</p> <p>Can discontinue monitoring if exposures are below AL and confirmed</p>
— Above the PEL	<p>Monitor every 3 months</p> <p>Can discontinue monitoring if exposures are below AL and confirmed</p>

Key Fact

- You must sample for different worker exposures, i.e..
 - Different Weld Procedures
 - » Stick, MIG, TIG, Submerged Arc, plasma cutting, arc gouging
 - Different Base Metals
 - » 304
 - » 2201
 - » 2205
 - Different Weld Chemistry
 - » 2209 wire
 - » High nickel chrome moly wire

Hexavalent Chrome

How Do We Control Exposure?

Under the Current Standard, Typical Control Measures Include:

- **Local Exhaust Ventilation (Fume Extractors)**

Hex Chrome Engineering Controls

- Key Fact:
- It's very difficult to use local exhaust ventilation on shielded gas welding (MIG)
- Will remove the shield gas – resulting in poor

weld quality

Hexavalent Chrome

How Do We Control Exposure?

Under the Current Standard, Typical Control Measures Include:

- **Respirators**
 - **Air Purifying**
 - **HEPA**
 - **PAPR**
 - **Supplied Air**
 - **Welding Hood PAPR**

Hexavalent Chrome

How Do Control Exposure?

Respirator Use in Hexavalent Chrome Exposures:

One Thing to Remember: Respirators with PF of 10 Will Not Work @ Exposures above 50ug/m3. Otherwise, Air Supplied

Respirators or Full Face Air Purifying Respirators must be used.

We Must Attempt to Engineer Out the Exposure...How?

Case Study

Hexavalent Chrome

Example of Implemented Program Project

- *AEP Cardinal 3 JBR Vessel Erection*
- *Base Metal: 2205 & 2550 Stainless*
- *Weld Procedures: MIG and Pulse Arc Welding with 2209 & High NiCrM Wire*

Hexavalent Chrome

Example of Implemented Program

- **Assessment with IH sampling for Welding**
- *sampling under the hood*
(25mm PVC Cassette)
- **Low Profile 3M P100 with 2097 Cartridge**
- **3M 8515**
- **Protective Clothing & Eye Protection**

Hexavalent Chrome

Actual Example IH Sample Results

- **304 Stainless Base Metal - MIG 309 Wire:**
5.63-34.30 ug/m³
- **2205 Stainless Base Metal - MIG 2209 Wire:**
5.75-47.23 ug/m³
- **2205 Stainless Base Metal - Pulse Arc 2209 Wire**
1.15- 7.93 ug/m³
(Note that Pulse Arc MIG may not be used on many welding applications)
- **304 Stainless TIG Welding:**
0.4 - 5 ug/m³

Hexavalent Chrome

Example of Implemented Program

Change Trailer with Hygiene Facilities

Hexavalent Chrome

Example of Implemented Program

Barricaded
Areas &
Signs

Hexavalent Chrome

Example of Implemented Program

**Laundering
of Protective
Clothing with
Water
Soluble Bags**

**This solution
coordinated
with UniFirst**

Common Citations

- **1910.1026(d)(2)(i)** Exposure Monitoring
- **1910.1026(d)(4)(i)** Worker Communication
- **1910.1026(e)(1)** Regulated Areas
- **1910.1026(f)(1)(i)** Control Measures
(Engineering)
- **1910.1026(g)(1)** Respiratory Protection
- **1910.1026(h)(1)** Protective Clothing & Equipment
- **1910.1026(i)(1)** Hygiene Areas & Practices
- **1910.1026(l)(2)(i)** Employee Information & Training
- **1910.1026(m)(4)(i)** Medical Surveillance

Hexavalent Chrome

References To Use

Microsoft P

Occupational Safety and Health Administration - OSHA HOME PAGE - Microsoft Internet Explorer provided by OSHA

File Edit View Favorites Tools Help

Back Forward Stop Refresh Search Favorites

Address: http://www.osha.gov/

U.S. Department of Labor Occupational Safety & Health Administration

www.osha.gov MyOSHA Search Advanced Search | A-Z Index

August 17, 2004 Site Index: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

OSHA

Audiences:

- En Español
- Small Business
- Workers
- Teen Workers

What's New

My OSHA

Personalize this site to see your favorite topics

OSHA QuickTakes

Subscribe Email Address: GO

Biweekly E-News Memo E-News Privacy Notice

In Focus

- OSHA Issues Alert on the Dangers Associated with Cleanup and Recovery from Hurricanes
- OSHA Urges Federal Employees to Fasten Seat Belts Symposium Focuses on Motor Vehicle Safety (Registration)
- Hospital-Based First Receivers Best Practices - Draft

OSHA News

- Sheet Metal and Air Conditioning Contractors National Association Aligns with OSHA
- OSHA Unveils Safety and Health Topics Page for Residential Construction
- American Safety and Health Institute Joins OSHA in Alliance
- OSHA Issues Final Rule on Respiratory Protection

Find It! in DOL
Department of Labor

Compliance Assistance

- Consultation
- eTools
- Grants
- Hispanic Workers and Employers
- Posters
- Recordkeeping
- Training

Laws & Regulations

- Standards
- Interpretations
- Federal Registers
- Directives
- Dockets & E-Comments

Cooperative Programs

- Alliances
- SHARP
- Strategic Partnerships
- VPP

State Programs

Interne

9 Items

start C:\WINDOWS\system32\Inbox - Microsoft O... Emailing: www.osha.gov Microsoft PowerPoint... Occupational Safety and Health Administration 8:52 AM

Hexavalent Chrome

References - URL's To View

- **OSHA Hex Chrome Website:**
www.osha.gov/SLTC/hexavalentchromium/recognition.html
- **NIOSH Topics Page** <http://www.cdc.gov/niosh/topics/hexchrom/>
- **NIOSH Methods Page:** <http://www.cdc.gov/niosh/76-129.html>
- **Argonne National Laboratory Paper on Chromium**
<http://www.ead.anl.gov/pub/doc/chromium.pdf>
- **NAM's Letter to OSHA**
http://www.nam.org/s_nam/doc1.asp?CID=201576&DID=232786
- **ASSE's Letter to OSHA** <http://www.asse.org/press424.htm>
- **Public Citizen's Position Letter**
<http://www.citizen.org/pressroom/release.cfm?ID=1800>

Objectives

Summary

Thank You For Attending!

Final Questions?

1-800-NC-LABOR

(1-800-625-2267)

www.nclabor.com

Handouts

Place all handouts at the end of this presentation