

Secretariat and publisher of
Z136 Series of Laser
Safety Standards

*Celebrating
44 years of
service to the
laser community*

Laser Institute of America

Founded in 1968, the LIA is celebrating 44 years of service to the laser community. The LIA is dedicated to fostering lasers, laser applications and laser safety worldwide. LIA accomplishes this mission through publications, conferences, symposia, and educational courses.

Laser Institute of America

Laser Safety Training

OSHA

**Asheboro, NC
October 30, 2012**

13501 Ingenuity Dr., Suite 128 • Orlando, FL 32826
800.345.2737 • Fax: 407.380.5588
www.LIA.org

© Laser Institute of America

Laser Safety Training

Course Notes

No part of this document may be copied, stored in an electronic retrieval system, or otherwise reproduced without the written consent of Laser Institute of America.

Quantum Jump

This work sponsored in part by the Laser Institute of America's "Quantum Jump" program. Quantum Jump is supported by contributions from many LIA Individual Members and the following founding Corporate Sponsors:

Coherent Inc.
Spectra-Physics Lasers

HGG Laser Fare
Hoya Corporation
Laurin Publishing
Lumonics
Melles Griot
Newport
PRC Laser
Schwartz Electro-Optics
Spectra-Physics Laser Diode Systems

Course Objectives

1. Identify the 4 hazard classes of lasers
2. Determine who is authorized and given the responsibility to monitor and implement a laser safety program
3. Be able to identify if a company has a laser safety program
4. Identify control measure for beam and non-beam hazards

Laser Institute
of America

How are Lasers Classified?

Section 1

Questions to Ask

- Question 1: What class of laser(s) are used?
- Rationale: Sets the level of controls that need to be in place according to ANSI Z136.1 standard.

Laser Institute
of America

Laser Hazard Classification Scheme ANSI Z136.1

- Class 1 (Exempt)
 - Incapable of producing damaging radiation levels during operation
 - Exempt from any control measure
- Example
 - Completely enclosed machine with higher powered laser inside

Laser Institute
of America

Laser Hazard Classification Scheme ANSI Z136.1

- Class 1M
 - Incapable of producing damaging radiation levels during operation
 - Unless** the beam is viewed with an optical instrument
 - Eye-loupe or telescope
 - Exempt from any control measure other than to prevent potentially hazardous optically aided viewing
- Example
 - Fiber optic communication systems

**Laser Institute
of America**

alliance
An OSHA Cooperative Program

Laser Hazard Classification Scheme ANSI Z136.1

- Class 2 (Low power)
 - visible (400-700 nm)
 - eye protection is aversion response
 - CW upper limit is 1 mW
- Examples
 - Supermarket or barcode scanners

**Laser Institute
of America**

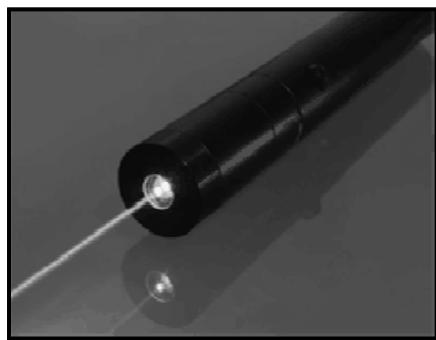
alliance
An OSHA Cooperative Program

Laser Hazard Classification Scheme ANSI Z136.1

■ Class 2M

- visible (400-700 nm)
- eye protection is aversion response for unaided viewing
- Potentially hazardous when viewed with optical aid
- CW upper limit is 1 mW

■ Examples


- Leveling instruments and some construction industry lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Hazard Classification Scheme ANSI Z136.1

■ Class 3R

- “R” stands for Reduced Requirements
- Potentially hazardous under some direct and specular reflection
- Eye must be focused and stable
 - Probability of injury is small
- Does not pose diffuse-reflection or fire hazard
- Simply replacing 3a

■ Example

- Laser pointer

Laser Institute
of America

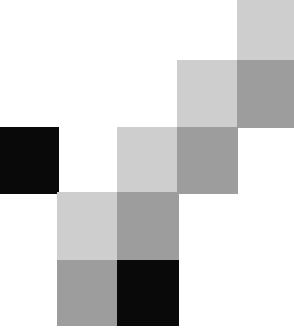
alliance
An OSHA Cooperative Program

Laser Hazard Classification Scheme ANSI Z136.1

Laser Institute
of America

- Class 3B
 - Operate between 5mW and 500mW
 - Normally not a fire or diffuse viewing hazard
 - Hazardous under direct and specular reflection viewing
- Examples
 - Some military lasers, lasers used in therapeutic medicine, some research lasers

Laser Hazard Classification Scheme ANSI Z136.1



- Class 4
 - hazardous to eye and skin from direct viewing, specular and diffuse reflections
 - fire hazard
 - may produce laser generated air contaminants
 - may produce hazardous plasma radiation
- Examples
 - Lasers used for cutting, drilling, marking, welding materials, entertainment and surgical lasers

Laser Institute
of America

What is the USA Laser Safety Standard?

Section 2

Questions to Ask

- Question 2: Do you have a copy of ANSI Z136.1 *Safe Use of Lasers* standard?
- Rationale: This document is the core of any laser safety program. At least one copy should be onsite and available to employees.

Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1-2007 for Safe Use of Lasers

- Principal U.S. safety standard
- Began in 1969 at request of U.S. Department of Labor
- April 26, 1973, final document approved
- Revised in 1976, 1980, 1986, 1993, 2000, 2007
- Referred to as ANSI Z136.1-2007

Laser Institute
of America

alliance
An OSHA Cooperative Program

American National Standard for Safe Use of Lasers

- Laser Institute of America has been Secretariat and Publisher since 1986
- Responsible for organizing the Consensus Committees
 - industry
 - government
 - public sectors

Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1: What Type of Standard?

- Z136.1 is a “national consensus standard”
- It is Voluntary
- It is not regulatory nor legally binding

Laser Institute
of America

ANSI Z136.1: What Type of Standard?

- To be able to say “our organization is in compliance with” or “conforms with” ANSI Z136.1 means:
 - You follow those mandatory requirements that are designated “**SHALL**”
 - You take into consideration advisory recommendations designated “**SHOULD**”
 - If they make sense in your application

Laser Institute
of America

Purpose of ANSI Z136.1-2007 for Safe Use of Lasers

- Provides recommendations for the safe use of lasers and laser systems between 180 nm and 1 mm
- Helps determine thresholds where radiant energy becomes a hazard
- Categorizes lasers into four basic hazard classes
- Specifies controls for each laser hazard class

Laser Institute
of America

Questions to Ask

- Question 3: Who is the Laser Safety Officer?
- Rationale: Required by ANSI Z136.1.
You cannot have an effective laser safety program if there is not a properly trained LSO to oversee it.

Laser Institute
of America

Defines Role of Laser Safety Officer

■ Laser Safety Officer (LSO)

- Given responsibility and authority for safety program
- In charge of monitoring and enforcement of hazard evaluation and control of laser hazards
- “to effect” - LSO either performs task or ensures it is performed

Laser Institute
of America

Laser Safety Officer

■ Laser Safety Officer

- Required for Class 3B & 4 lasers
- May be full or part-time position
 - Rarely a full time job

■ ANSI Z136.1

- Responsibilities in appendix A
- Appendix A is normative

Laser Institute
of America

Questions to Ask

- Question 4: Do you have a Laser Safety Program in place? Can you show me?
- Rationale: Required by ANSI Z136.1.
A documented program indicates thought has been given to laser safety and sets the programs requirements.

Laser Institute
of America

Where do you
find Lasers?

Section 3

Questions to Ask

- Question 5: What types of lasers do you have and what are they used for?
- Rationale: Gives indication of program awareness. If they don't know it's an indication of poor training.

**Laser Institute
of America**

Industrial Lasers are in:

- Manufacturing Facilities
- Job shops
- Automotive industry
- Aerospace industry
- Shipbuilders
- Bottling industry
- Tobacco industry
- Semiconductor manufacturers
- Cosmetic industry
- Food packaging industry
- Heavy equipment industry
- University and Research Facilities
- Clothing industry

**Laser Institute
of America**

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industrial Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industry Applications

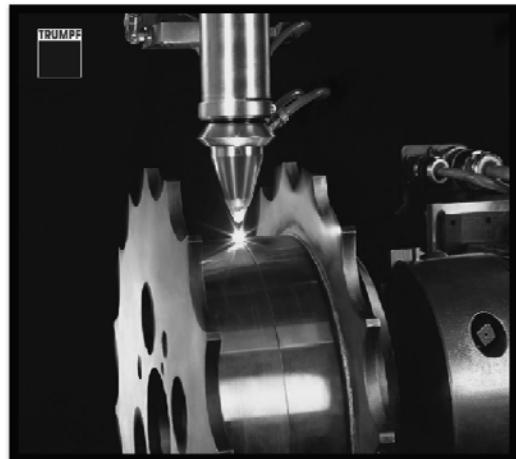
- Cutting

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industry Applications

Drilling



Laser Institute
of America

alliance
An OSHA Cooperative Program

Industry Applications

Welding

Laser Institute
of America

alliance
An OSHA Cooperative Program

Industry Applications

Marking

Laser Institute
of America

alliance
An OSHA Cooperative Program

Where are Research Lasers?

- Universities and Colleges
- R & D Labs
- Optics Companies
- Geology
- DOE
- Military

Laser Institute
of America

Research Lasers

Laser Institute
of America

Research Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Research Applications

- Single molecule detection
- Spectroscopy
- Diagnostics
- Measurements

Laser Institute
of America

alliance
An OSHA Cooperative Program

Research Applications Military

Direct energy weapon
Targeting
Tracking
Range finding

Laser Institute
of America

alliance
An OSHA Cooperative Program

Where are Medical Lasers?

- Hospitals
- Clinics
- Outpatient/Surgery Centers
- MediSpas
- Ophthalmology
- Dermatology
- Veterinarians
- Dentists

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Lasers

Laser Institute
of America

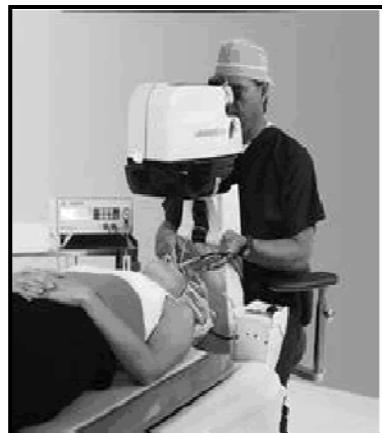
alliance
An OSHA Cooperative Program

Medical Lasers

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Lasers


Laser Institute
of America

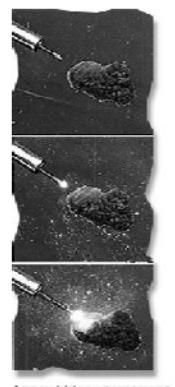
alliance
An OSHA Cooperative Program

Medical Applications

Ophthalmology

- Vision correction

Laser Institute
of America


alliance
An OSHA Cooperative Program

Medical Applications

Urology

Cardiology

General surgery

Laser kidney treatment.

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Applications

Dentistry

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Applications

Veterinary

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Applications

Hair Removal

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Applications

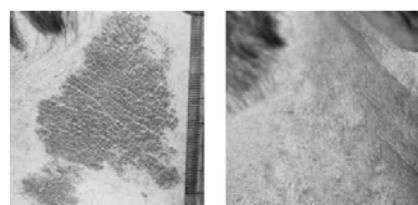
Tattoo

Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Applications

Skin resurfacing



Laser Institute
of America

alliance
An OSHA Cooperative Program

Medical Applications

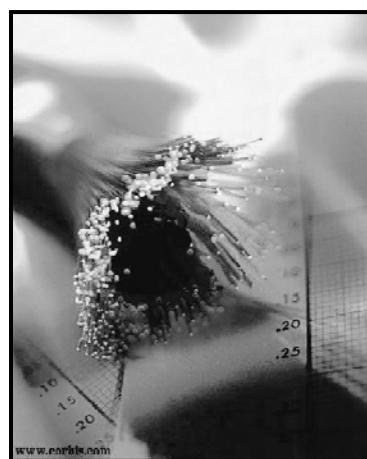
Port wine stain removal Vein treatments

Laser Institute
of America

alliance
An OSHA Cooperative Program

Other Industries

- Communications
- Construction
- Entertainment
- Consumer



Laser Institute
of America

Communications


Service
providers

Laser Institute
of America

Construction Surveying & Leveling

Laser Institute
of America

alliance
An OSHA Cooperative Program

Entertainment

Laser light shows

Laser Institute
of America

alliance
An OSHA Cooperative Program

Most Common Lasers

Laser Institute
of America

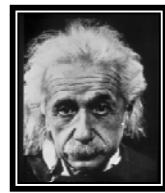
alliance
An OSHA Cooperative Program

Questions to Ask

- Question 6: Do you know where all the lasers are? Have them show you the inventory list.
- Rationale: Gives indication of control of program. Lasers tend to move around and they need to be tracked.

Laser Institute
of America

alliance
An OSHA Cooperative Program



What is a laser and How does it work?

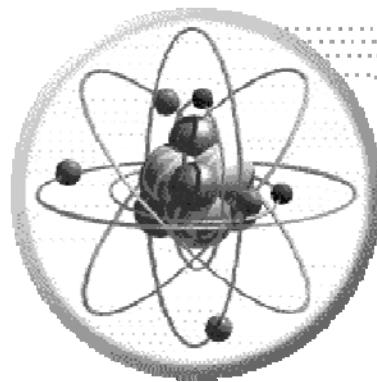
Section 4

Laser History

Einstein – Theory of
Stimulated Emission of
Radiation. – 1917

Arthur Schawlow and Charles Townes
Nobel prize for theory on “Optical
Maser” based upon this theory of
Stimulated Emission. – 1958

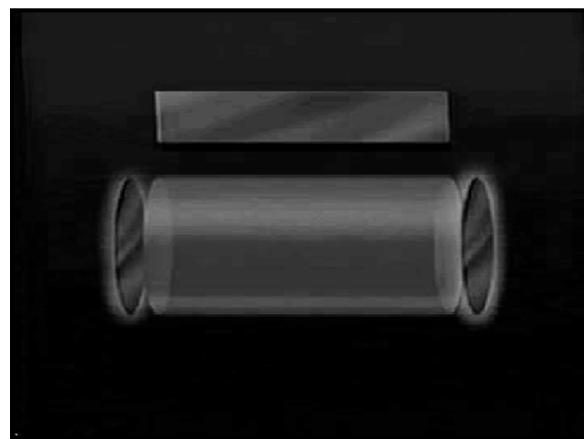
Theodore Maiman developed the 1st
Laser – a Ruby Laser – in 1960 based
upon Schawlow & Townes theory.



**Laser Institute
of America**

alliance
An OSHA Cooperative Program

What is a Laser?


Light
Amplification
Stimulated
Emission of
Radiation

Laser Institute
of America

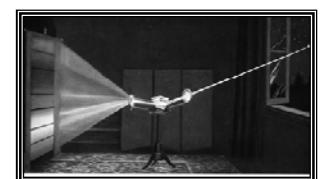
alliance
An OSHA Cooperative Program

Lasing Medium Together with the Excitation Mechanism

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser vs. Non-Laser


LASER

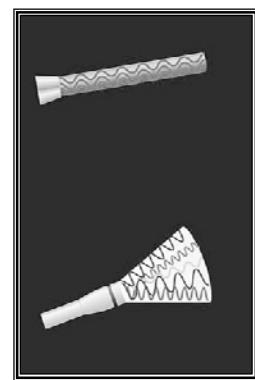
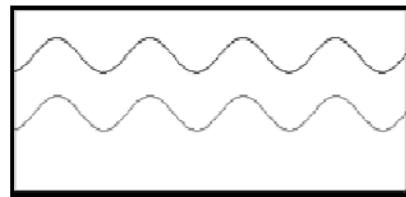
Monochromatic

FLASHLIGHT

Polychromatic

Monochromatic:

beams of light are “pure” lines of color

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser vs. Non-Laser

Coherence

Light waves are in phase

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser vs. Non-Laser

Non-collimated

Collimated

Collimation allows for light to be focused to very small spot sizes

Laser Institute
of America

alliance
An OSHA Cooperative Program

Directional

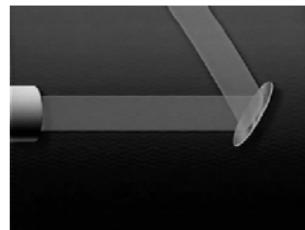
- Laser beams increase in size (diverge) very little over distance
- A typical laser will “grow” 1 mm every 1 meter traveled (or 1 m in 1 km)
- Such a beam is said to have a 1 milliradian divergence

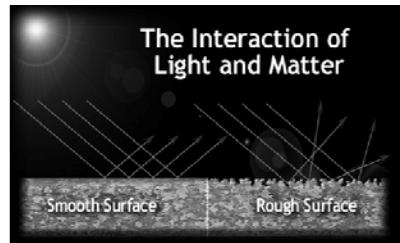
Laser Institute
of America

alliance
An OSHA Cooperative Program

What does this have to do with Laser safety?

Laser Institute
of America


Monochromaticity


Laser Institute
of America

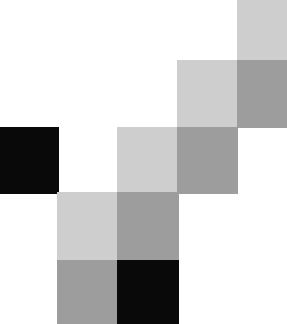
Reflection

Specular

Diffuse

Laser Institute
of America

alliance
An OSHA Cooperative Program


Directionality

- The laser beam can pose a hazard at a considerable distance
- Unlike ionizing radiation, lasers radiation is only hazardous when it is on and when you have line-of-sight to the beam

Laser Institute
of America

alliance
An OSHA Cooperative Program

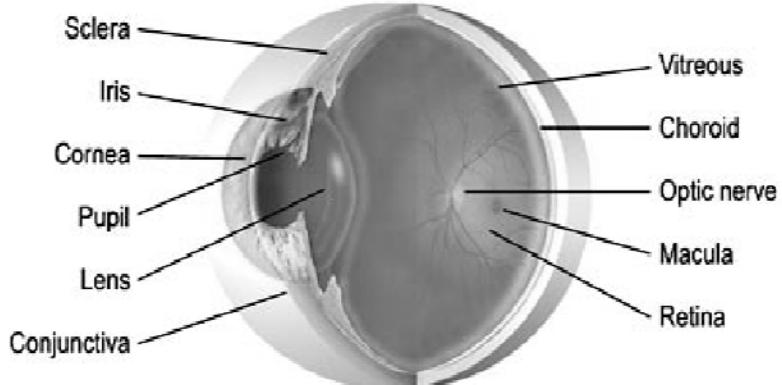
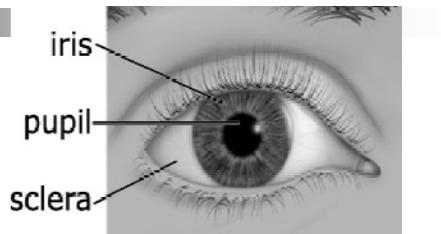
What are the Laser Hazards?

Section 5

Laser Hazards

Beam Hazards

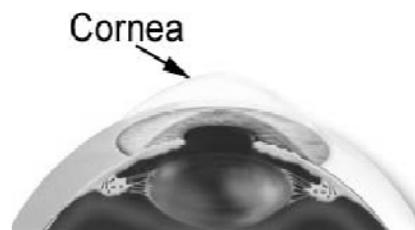
Hazard Analysis



Non-Beam Hazards

Laser Institute
of America

alliance
An OSHA Cooperative Program

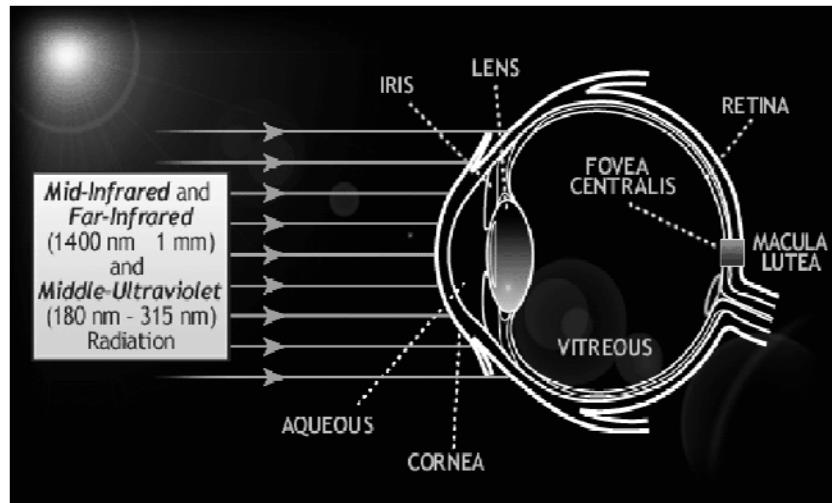
Eye Anatomy



Laser Institute
of America

alliance
An OSHA Cooperative Program

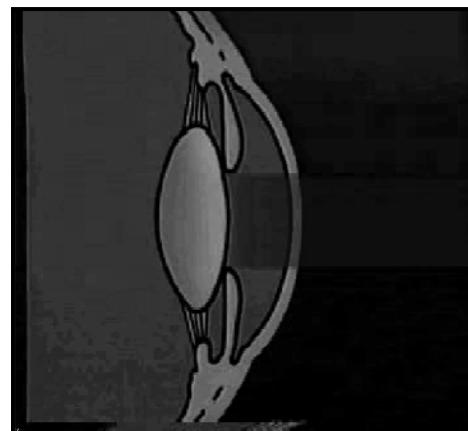
The Cornea


- The **cornea** is the transparent front part of the eye that covers the iris, pupil, and anterior chamber

Laser Institute
of America

alliance
An OSHA Cooperative Program

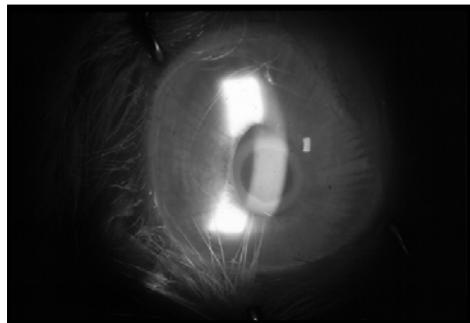
Ocular Absorption Site vs. Wavelength


Laser Institute
of America

alliance
An OSHA Cooperative Program

Corneal Injury

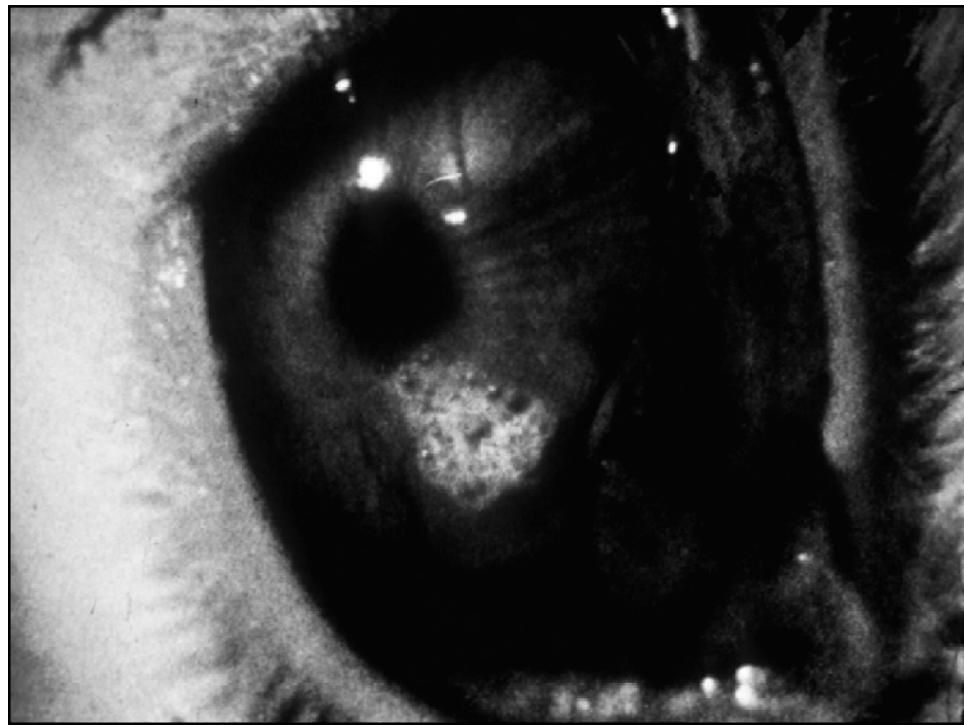
Photokeratitis and Corneal Thermal Burns

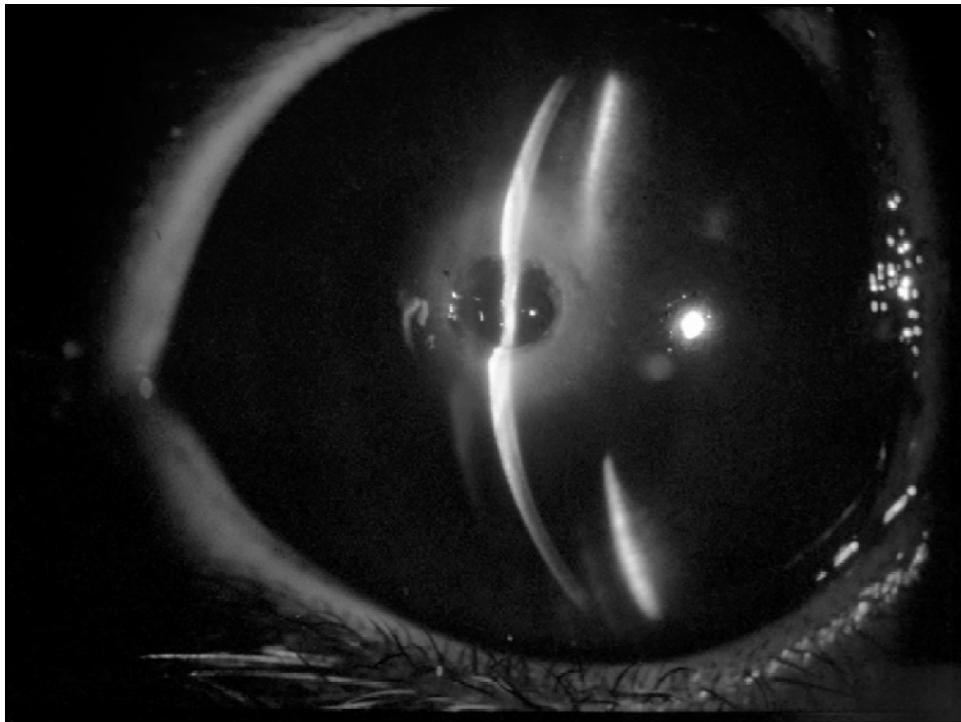

- Welder's Flash or Snow Blindness
- Burns due to heat

Laser Institute
of America

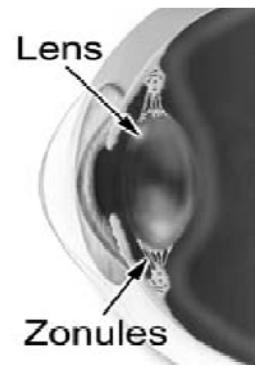
alliance
An OSHA Cooperative Program

Corneal Injury

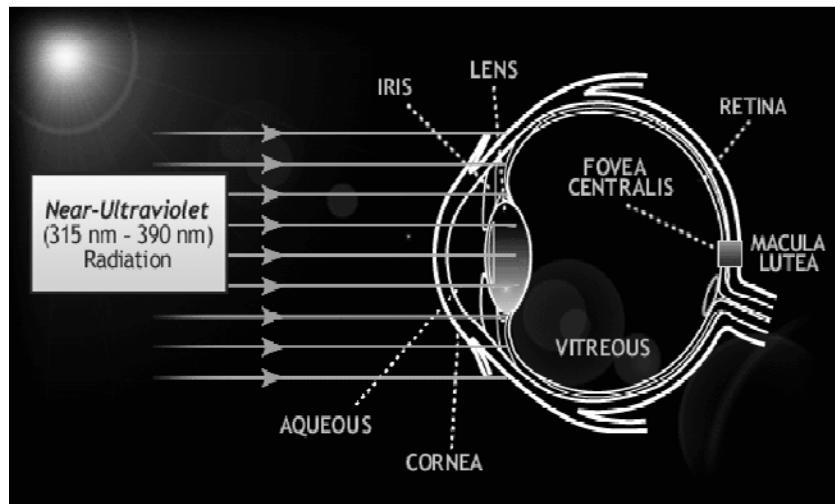



- Superficial (Threshold) Injury
- Deep Burns.

Laser Institute
of America


alliance
An OSHA Cooperative Program

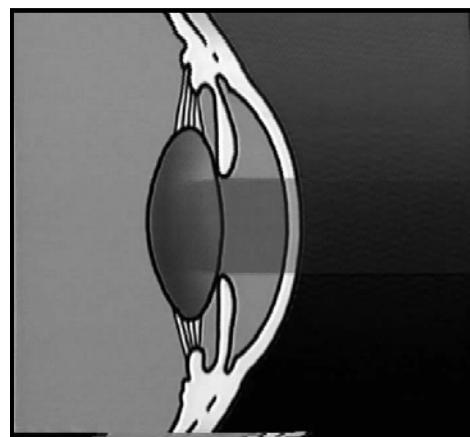
The Lens


- Lens - Provides accommodation, the ability to focus on near objects

Laser Institute
of America

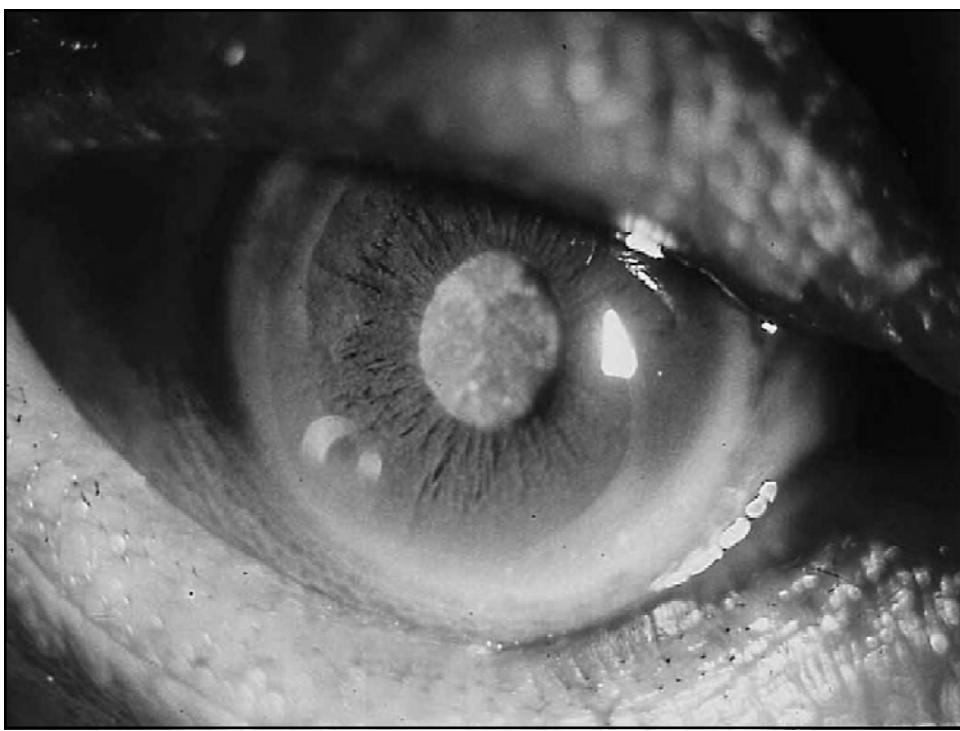
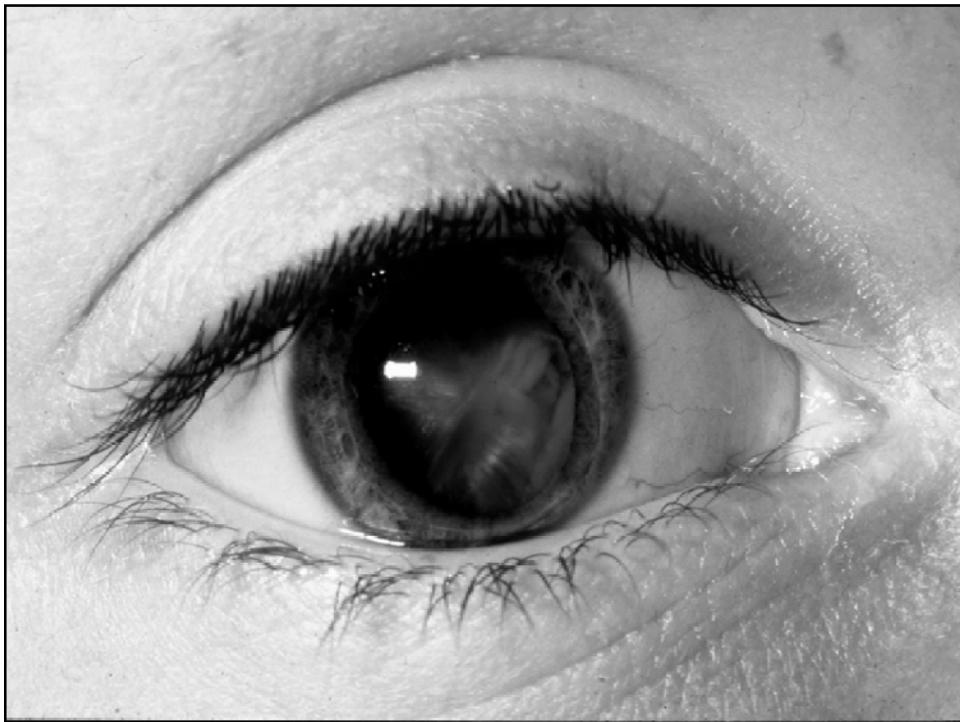
alliance
An OSHA Cooperative Program

Ocular Absorption Site vs. Wavelength



Laser Institute
of America

alliance
An OSHA Cooperative Program



Cataract - clouding of the lens

- Exposure to Ultraviolet radiation (UV-B).
- Infrared (Heat)

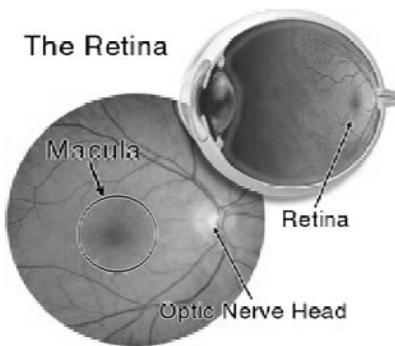
Laser Institute
of America

alliance
An OSHA Cooperative Program

The Retina

Macula Lutea

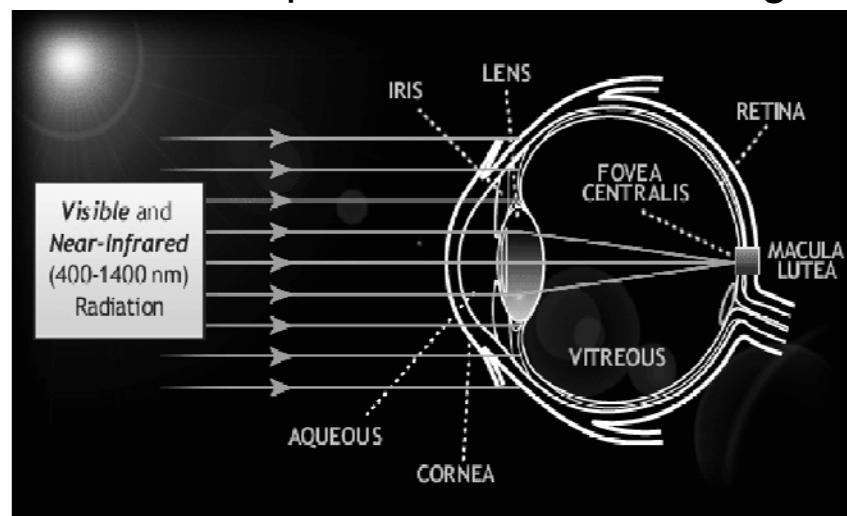
Highest visual acuity


Fovea Centralis

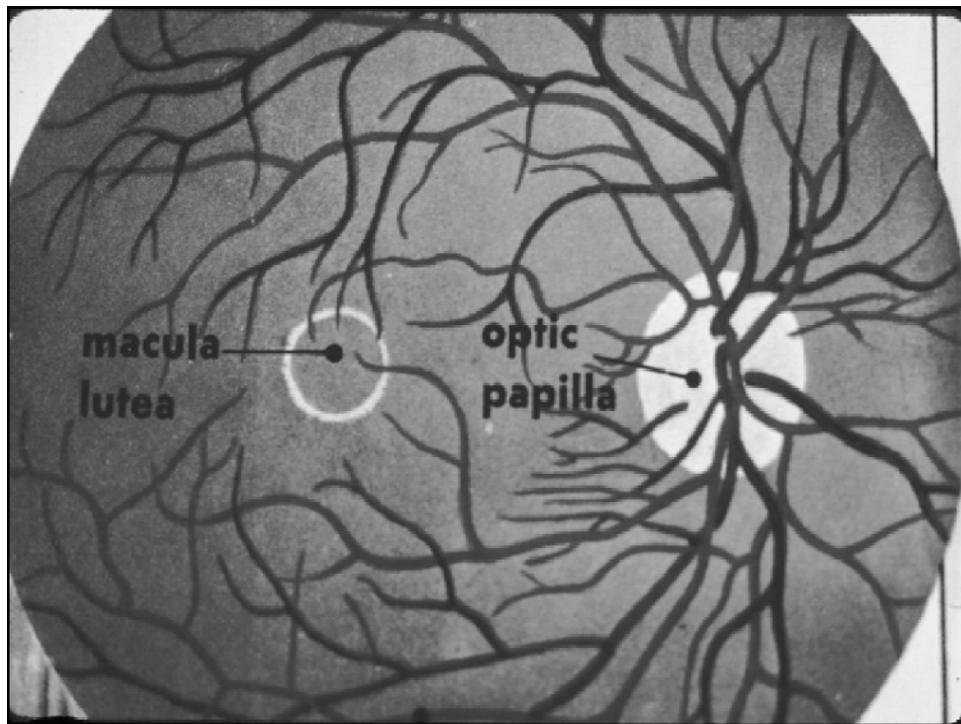
Center of macula.

Highest concentration of cones.

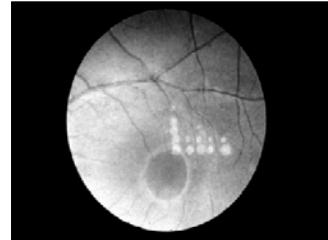
Peripheral Retina


High concentration of rods

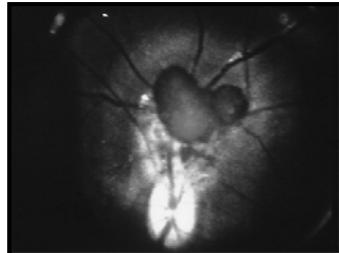
Laser Institute
of America


alliance
An OSHA Cooperative Program

Ocular Absorption Site vs. Wavelength

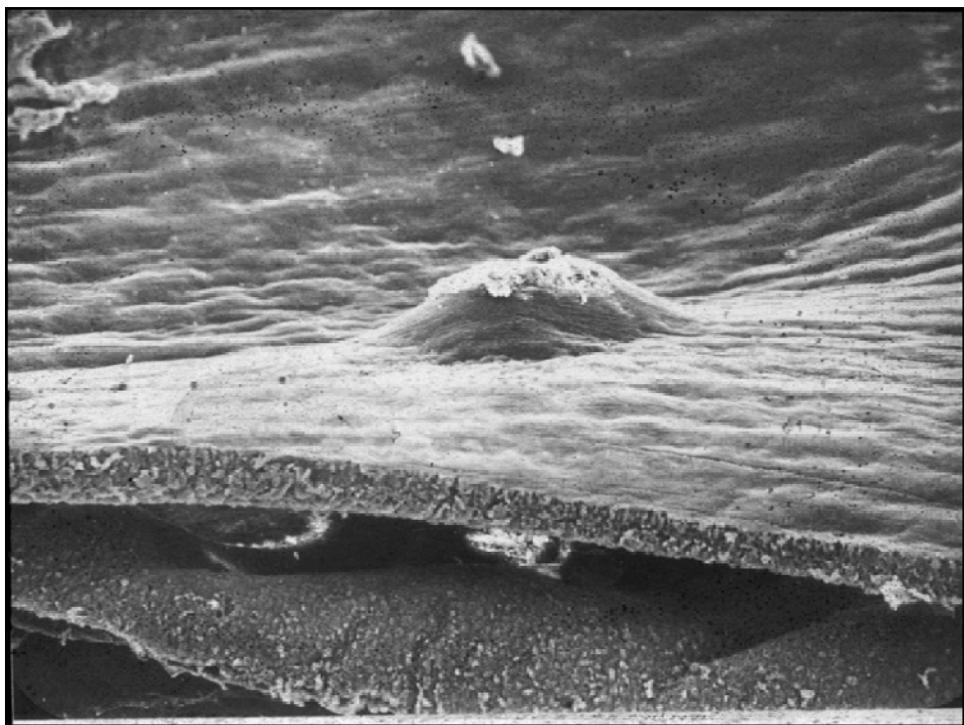

Laser Institute
of America

alliance
An OSHA Cooperative Program

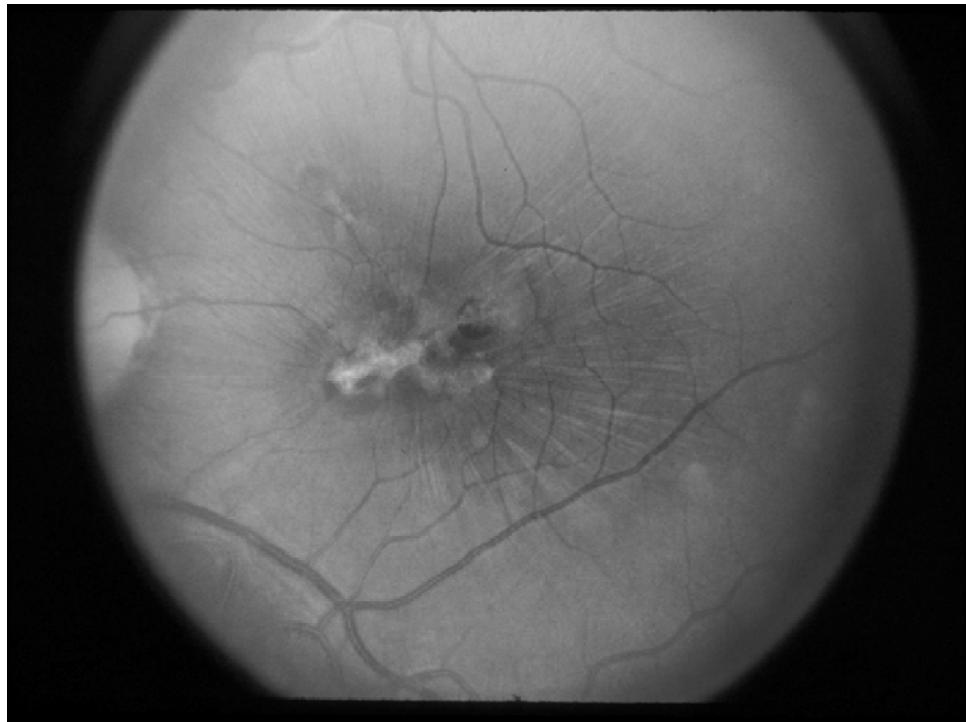


Retinal Injury

Retinal Thermal Burns
or “Chorioretinal
burns”,



Retinal hemorrhage



Laser Institute
of America

alliance
An OSHA Cooperative Program

Skin Hazards

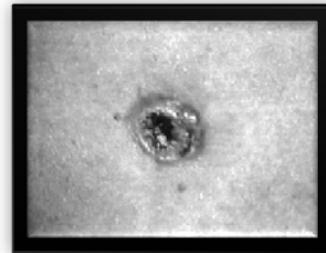
- Different wavelengths are absorbed by different structures in the skin and at different depths

Laser Institute
of America

alliance
An OSHA Cooperative Program

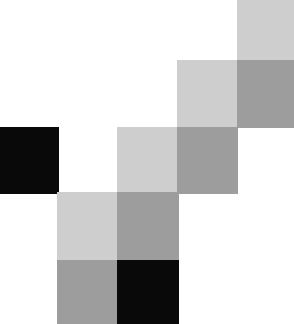
Skin Injury

- Thermal Skin Burns
 - Rare but most common from CO₂ laser exposure.
- Ultraviolet "Sunburn"
 - Erythema (reddening) from UV-B and UV-C radiant energy.



**Laser Institute
of America**

alliance
An OSHA Cooperative Program


Skin Injury

- CO₂ laser
- Most notable injuries
 - Holes in skin
 - 3rd degree burns
- Nd:YAG laser skin burns are more penetrating, and take longer to heal

**Laser Institute
of America**

alliance
An OSHA Cooperative Program

Is there a safe limit that one could be exposed to without getting hurt?

Section 6

Maximum Permissible Exposure (MPE)

■ Definition

- Maximum level of exposure to laser radiation without hazardous effect or adverse biological changes in the eye or skin

Laser Institute
of America

alliance
An OSHA Cooperative Program

Maximum Permissible Exposure (MPE)

- Used to determine
 - Nominal hazard zone (NHZ)
 - Optical density (OD)
 - Accessible Emission Limit (AEL)

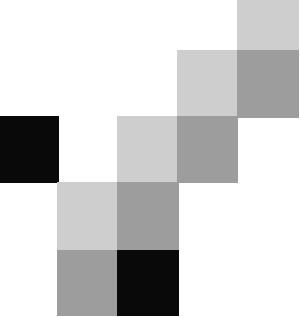
Laser Institute
of America

The Nominal Hazard Zone, NHZ

- The NHZ is the space within which the level of direct, reflected or scattered laser light exceeds the MPE level for the laser.

Laser Institute
of America

The Nominal Hazard Zone, NHZ: Nominal Hazard Zones (NHZ) for Various Lasers


Nominal hazard distance (m)

Laser Type	Exposure Duration	Direct	Lens-on Laser	Diffuse
Nd:YAG	10 s	790	6.4	0.8
CO ₂	10 s	399	5.3	0.4
Argon	0.25 s	505	33.6	0.25

Laser Institute
of America

alliance
An OSHA Cooperative Program

How do we protect
ourselves from
Laser Radiation?

Section 7

Enclose the Process

- Plastics most often used include:
 - Poly(methyl methacrylate) such as Plexiglass
 - Polycarbonate such as Lexan
- Plexiglass chamber at right is for argon laser (488 nm = blue light)

Laser Institute
of America

alliance
An OSHA Cooperative Program

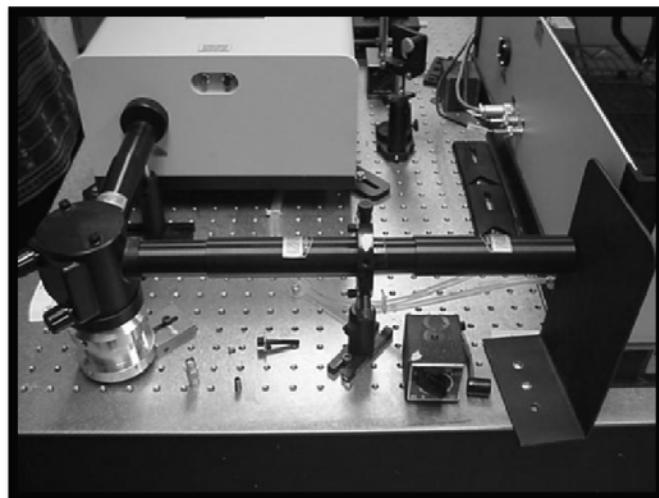
Enclose the Process: Polycarbonate for CO₂ Lasers

- PC windows in semi-enclosure for plate cutting laser
- Semi-enclosure: open on top

Laser Institute
of America

alliance
An OSHA Cooperative Program

Enclose the Process: Polycarbonate for CO₂ Laser Conveyor Enclosures


- Turn-key products are often Class IV due to CDRH definition of “human access” and conveyor openings
- LSO should determine if NHZ extends out conveyor entrance/exit

Laser Institute
of America

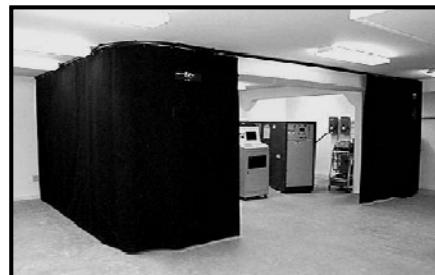
alliance
An OSHA Cooperative Program

Enclose Beam Path

Laser Institute
of America

alliance
An OSHA Cooperative Program

Enclose and View Remotely



Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Barriers and Curtains

- Can be used to limit beam path if it carries beyond the Nominal Hazard Zone

Laser Institute
of America

alliance
An OSHA Cooperative Program

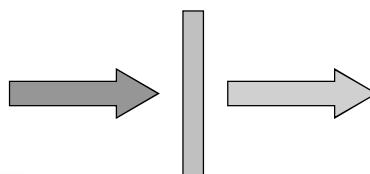
Questions to Ask

- Question 7: Is laser eyewear required and used?
- Rationale: This is an indication of awareness and training. Ask to see eyewear and check that it is properly marked with OD and wavelength. Also check to see if it is properly stored. As with any form of PPE it needs to be in working condition.

Laser Institute
of America

Laser Safety Eye Protection

- Glass
 - scratch resistant
 - stability against bleaching
 - ease for prescription lenses
 - higher optical quality
 - good visual transmittance
- Plastic
 - low weight
 - break resistant
 - Less expensive


Laser Institute
of America

Courtesy Innovative Optics

Optical Density $D(\lambda)$

- OD is the base 10 logarithm of the attenuation factor associated with the filtration medium
- Attenuation factor is the ratio of the laser beam irradiance striking the filter divided by the irradiance transmitted by the filter

Laser Institute
of America

alliance
An OSHA Cooperative Program

Optical Density OD

<u>OD</u>	<u>Attenuation</u>	<u>Transmission</u>
1	10	0.1
2	100	0.01
3	1000	0.001
4	10,000	0.0001
5	100,000	0.00001
6	1,000,000	0.000001

Laser Institute
of America

alliance
An OSHA Cooperative Program

Optical Density (OD)

- Eyewear must be marked with OD as a function of wavelength
- Laser eyewear is not for intended direct viewing of the beam
- Some manufacturers mark eyewear "DVO" for "diffuse viewing only"

Laser Institute
of America

What about the Non-beam Hazards?

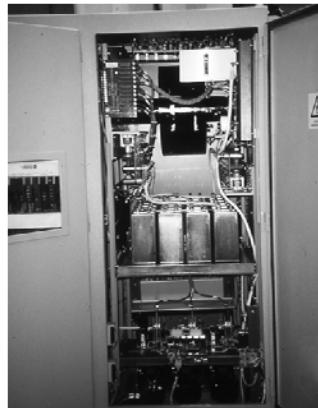
Section 8

Non-Beam Hazards

- Are a class of hazards that do not result from direct human exposure to a laser beam

Laser Institute
of America

Non-Beam Hazards & Z136.1-2007, Section 7


- “Non-Beam Hazards” section provides guidance on:
 - Electrical hazards
 - Laser generated airborne contaminants
 - Collateral and plasma radiation
 - Fire hazards Explosion hazards
 - Compressed gases
 - Laser dyes
 - Robotics-associated mechanical hazards
 - Noise
 - Waste disposal
 - Continuing spaces
 - Ergonomics

Laser Institute
of America

Electrical Accidents

- Electrocution: 5th leading cause of work related injury/death in U.S.
- Electrocution: one cause of laser-related death
- 2nd most often reported cause of laser accidents

Laser Institute
of America

alliance
An OSHA Cooperative Program

Capacitor Exposure

- Potential for:
 - Accumulation of residual charge after equipment is deenergized
 - Heating and explosion with high current flow
 - Explosion from capacitor's internal failure
 - Arcing at contact point for internal failure

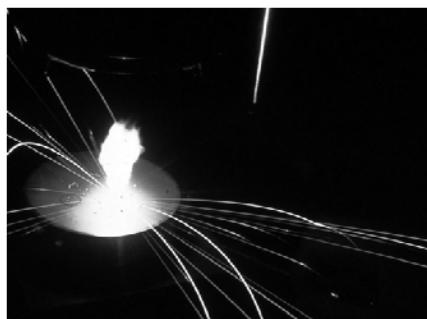
Laser Institute
of America

alliance
An OSHA Cooperative Program

Arc Burn

4.3 ELECTRIC ARC/BLAST

Most people are very aware of the dangers of electrocution associated with electrical work. Fewer people, however, recognize the extreme hazards associated with the electric arc/blast. Electrical burns can be received from an electric arc due to a short circuit or ground fault. The heat generated by an electric arc can reach temperatures from 15,000 °F. up to 35,000 °F. which is a little over four (4) times the temperature of the surface of the sun. Only thermonuclear reactions and the laser, which generates temperatures up to 100,000 °F. can develop hotter temperatures here on earth.



Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Generated Air Contaminants (LGAC) Sec 7.3

- Generated when class 3B or 4 laser beams interact with matter
- LGAC depends upon target material, cover gas and beam irradiance
- Difficult to predict what LGAC is released into air

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Generated Air Contaminants (LGAC)

- When target irradiance reaches $10^7 \text{ W} \cdot \text{cm}^{-2}$
 - Target materials may liberate carcinogenic, toxic and noxious airborne contaminants (table F1(a), appendix F)
- LGAC released may be gaseous or particulate (see table F1(b))
- LSOs responsibility to ensure that any IH issue be addressed and he/she may consult with Industrial Hygienist

Laser Institute
of America

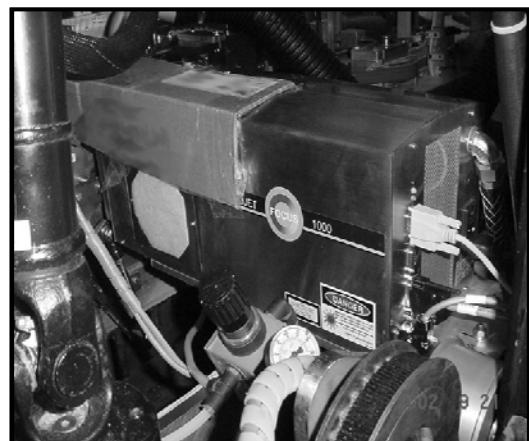
Laser Generated Air Contaminants (LGAC) Aerosols

- Types: dust, mist, fume, smoke, fog, smog
- Interests: composition, size, distribution, concentration

Laser Institute
of America

Plasma Radiation example

- IR beam interacts with stainless steel
- Small spot of light is visible beneath nozzle
- Bright and rich in blue wavelengths



Laser Institute
of America

alliance
An OSHA Cooperative Program

Fire Hazards – Combustible Materials


- Enclosure materials
- Construction materials
- Target materials
- Laser Gases
- Solvent vapors
- LGAC

Laser Institute
of America

alliance
An OSHA Cooperative Program

Compressed Gas

Laser Institute
of America

alliance
An OSHA Cooperative Program

How do we protect
ourselves from non-
beam hazards?

Section 9

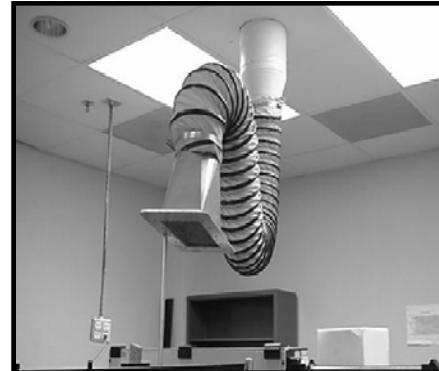
Electrical Hazards Control - Capacitors

- Restrict access until capacitors are discharged, shorted, and grounded
- Consider capacitor cases “Hot”
- Store capacitors shorted
- Verify automatic discharge devices
- Conduct manual shorting - don’t trust auto-discharge

Laser Institute
of America

Electrical Hazards Controls - PPE

- Wear safety glasses
- Use insulating (rubber) gloves & arm covers as applicable
- Wear “flash suit” for high-voltage work
 - NFPA 70E Standard
 - Tested according to ASTM F-1506



Laser Institute
of America

Control Measure: Laser Generated Air Contaminants (LGAC)

- Control measures
 - Exhaust ventilation
 - Hoods, ducts, air cleaners, and fans
 - Comply with latest version of *Industrial Ventilation & Fundamentals Governing the Design & Operation of Local Exhaust Systems* (ANSI Z9.2)
 - Respiratory protection
 - Used to control brief exposure or as interim control until engineering control are put in place
 - Compliance with OSHA (29CFR 1910.134)

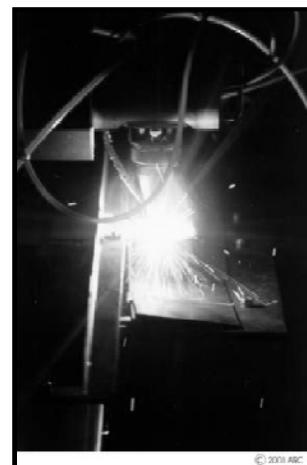
**Laser Institute
of America**

alliance
An OSHA Cooperative Program

Control Measure: Laser Generated Air Contaminants (LGAC)

Process Isolation

- Surround process with barrier, remote control devices, robotic manipulators
- Especially when laser welding or cutting of materials such as plastics, biological material, composite substrates



**Laser Institute
of America**

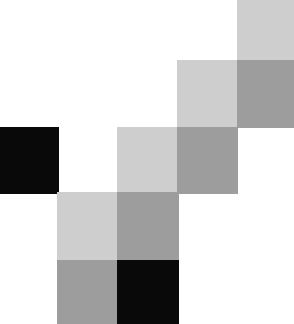
alliance
An OSHA Cooperative Program

Control Measure: Plasma Emission (180 to 550 nm)

- Blue-green spectral region
 - Eyewear that is a minimum OD of 2.0 to 3.0
 - Or welding shade of 6 (ANSI Z87.1-2003)
- Greater ODs may be required for higher powered cutting or welding systems
- Plasma emission ODs do not replace OD emissions for lasers

alliance
An OSHA Cooperative Program

**Laser Institute
of America**


Control Measure: Fire Hazards

- Remove flammable substances and compounds from the laser area
- Enclose area with laser flame retardant barriers
- Follow NFPA Code #115

alliance
An OSHA Cooperative Program

**Laser Institute
of America**

What other control measures are there?

Section 10

Laser Controlled Areas

- Class 3B laser controlled area
- Class 4 laser controlled area
- Temporary laser controlled area

Laser Institute
of America

alliance
An OSHA Cooperative Program

Class 3B Laser Controlled Area ANSI Z136.1-2007 Sec. 4.3.10.1

- Operated by authorized & trained personnel
- Posted with warning sign
- Operated in manner beam path well defined
- Limit beam path if extends beyond NHZ
- 8 “should” points - p. 33 in ANSI Z136.1-2007

Laser Institute
of America

ANSI Z136.1 “Should” Points

- Be under the direct supervision on an individual knowledgeable in laser safety

Laser Institute
of America

ANSI Z136.1 “Should” Points

- Be located so that access to the area by spectators is limited and requires approval

Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1 “Should” Points

- Have any potentially hazardous beam terminated in a beamstop of an appropriate material

Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1 “Should” Points

- Have only diffusely reflecting materials in or near the beam path, where feasible

Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1 “Should” Points

- Provide personnel within the laser controlled area with the appropriate eye protection

Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1 “Should” Points

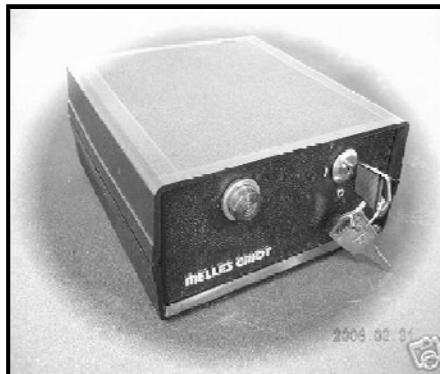
- Have the laser secured such that the exposed beam path is above or below eye level

Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1 “Should” Points

- Have all windows, doorways, open portals, etc. from an indoor facility be either covered or restricted...



Laser Institute
of America

alliance
An OSHA Cooperative Program

ANSI Z136.1 “Should” Points

- Require storage or disabling of the laser or laser system when not in use to prevent unauthorized use

Laser Institute
of America

alliance
An OSHA Cooperative Program

Questions to Ask

- Question 8: Are access control measures in place such as interlocks or visual indicators?
- Rationale: Only authorized personnel should have access to laser operation areas.

Laser Institute
of America

alliance
An OSHA Cooperative Program

Class 4 Laser Controlled Area

- All “shall” and “should” requirements of Class 3B lasers
- Clearly marked “panic button” to interrupt laser beam
- Entryway controls:
 - non-defeatable
 - defeatable
 - procedural

Laser Institute
of America

alliance
An OSHA Cooperative Program

Entryway Controls

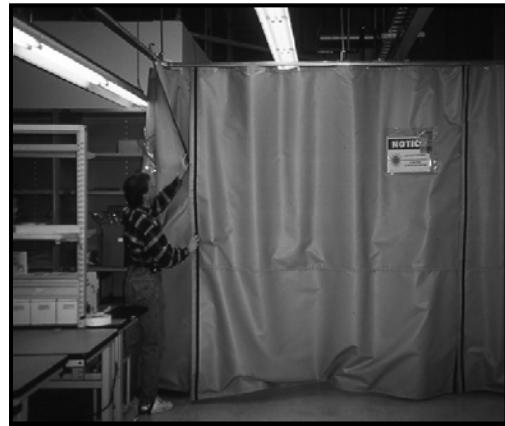
- Non-defeatable
 - hardware is used to deactivate laser, or reduce levels of MPE
- Defeatable
 - allows override of interlocks
 - controls deactivate laser or activate beam controls upon entry by individuals
- Procedural
 - individuals are trained and given PPE
 - laser radiation attenuated at entry
 - visible or audible signal that laser is operating

Laser Institute
of America

alliance
An OSHA Cooperative Program

Defeatable Entryway Controls

- Key-controlled momentary by-pass switch
- Lighted sign over door; ANSI-type sign on door
- Absorbing viewing panel in door for lone-worker policy



Laser Institute
of America

alliance
An OSHA Cooperative Program

Temporary Laser Controlled Area

- Laser curtains may be used to isolate a laser being serviced while other near-by lasers continue normal operation
- Generally applicable to "service" conditions
- Note, sign pocket holding "Notice" sign

Laser Institute
of America

alliance
An OSHA Cooperative Program

Entryway Controls: Lighted Sign

Laser Institute
of America

alliance
An OSHA Cooperative Program

Interlock Switches

Laser Institute
of America

alliance
An OSHA Cooperative Program

Questions to Ask

- Question 9: Ask to see laser warning signs. Are they accurate and ANSI compliant? Are they posted correctly?
- Rationale: Signage is part of hazard communication. They need to be accurate and ANSI compliant. A “Laser in Use” sign is not sufficient information.



Laser Institute
of America

Signs and Area Posting

- Signal Words
 - Caution
 - Danger
 - Notice
- Caution Signs
 - Class 2
 - Class 3R, low irradiance
- Danger Signs
 - Class 3R, high irradiance
 - Classes 3B/4
- Posting required for Classes 3B and 4

Laser Institute
of America

Sample Warning Sign for Temporary Controlled Area

Z136.1-2007 requires
the use of a warning
sign for a temporary
laser controlled area.
Signal word: "Notice"

Laser Institute
of America

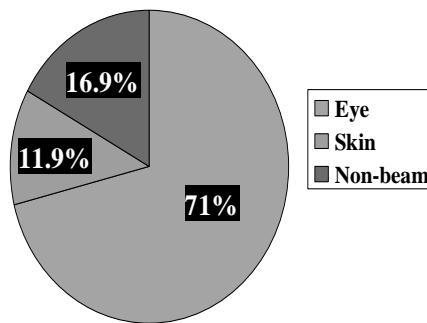
alliance
An OSHA Cooperative Program

Who gets injured?

Section 11

Laser Accidents and Incidents

- Laser class: IV > IIIB >> IIIR
- Beam scenarios
 - eye exposure: temporary/permanent vision loss
 - skin exposure: burns or photochemical effects
- Non-beam scenarios
 - shock/electrocution
 - exposure to chemical agents
 - ignition of flammables/combustibles



Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Accident & Incidents: Overview

- Top 5 lasers:
Nd:YAG, Ar, CO₂, dye,
diode
- Breakdown of
incidents
 - 71% - eye injury
 - 11.9% - skin injury
 - 16.9% - non-beam
incident

Data from Rockwell, RJ. ILSC 99 proceedings. LIA

Laser Institute
of America

alliance
An OSHA Cooperative Program

Personnel Exposure Summary

Accident Data Summary: Division of 395 events: 1964-1998

Technicians Exposed (81):	20.5%
Scientists Exposed (78):	19.8%
Students Exposed (46):	11.6%
Patients Exposed (40):	10.1%
Plant Workers Exposed (35):	8.9%
Dr.s & Nurses Exposed (26):	6.6%
Pilots & Military Exposed (26):	6.6%
Spectators Exposed (25):	6.3%
Laser Show Operators Exposed (11):	2.8%
Equipment only damaged (10):	2.5%
Field Service Exposed (10):	2.5%
Office Staff (uninvolved) (7):	1.8%

Data from Rockwell, RJ, ILSC 99 Proceedings, LIA

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Incidents: Eye Injury

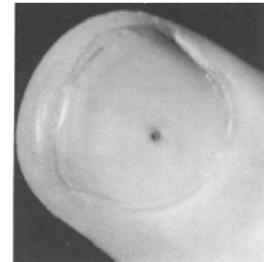
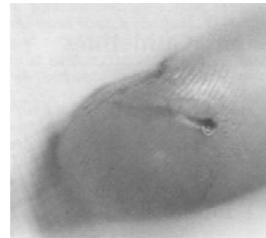
- >70% of all incidents
- 82.3% of severe eye injury caused by Nd:YAG, Ar, dye, ruby, dbl-Nd:YAG and Ti:Sapphire
- Laser light shows have resulted in transient effects (e.g., flash blindness) to airplane pilots

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Incidents: Eyewear Concerns

- Not using eyewear (may have been available)
- Eyewear failure
- Improper eyewear
- Improper fit

Laser Institute
of America

Skin Injury

- CO₂ laser – most often implicated
- Most notable injuries
 - Holes through fingers
 - 3rd degree burns
- In general, non-debilitating

Laser Institute
of America

Laser Accidents: Fire

- CO₂ > Nd:YAG, dye
- Beam: CO₂ & Nd:YAG
- Clothing: e.g., ties
- Solvents: dye

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Accidents: Death

- Blood loss (9)
- Embolism (7)
- Electrocution (5)
- Endotracheal tube fires (3)
- Skin loss (1)

From: Johnson & Wartick, ILSC 2003 Conf. Proc.
Prog.

Laser Institute
of America

alliance
An OSHA Cooperative Program

Most Hazardous Act

- Act of adjusting the optics in the beam path in relation to each other so the beam will propagate in some pre-determined manner; may be internal to laser or external.

Laser Institute
of America

alliance
An OSHA Cooperative Program

Laser Accidents: Alignment

- Estimates
 - ~1/3 of all (known) accidents
 - ~60-70% of all (known) laboratory accidents
- Common scenario:
unanticipated reflection
from an optic while not
wearing protective
eyewear

Laser Institute
of America

alliance
An OSHA Cooperative Program

Questions to Ask

- Question 10: Do you have a procedure in place for responding to laser accidents?
- Rationale: As with any type of accident there needs to be a response plan.

Laser Institute
of America

Other Consensus Standards & Regulations

Section 12

Laser Safety Standards: USA

- ANSI Z136.1 (2007) *for Safe Use of Lasers*
- Z136.2 (1997) *for Safe Use of Optical Fiber Communication Systems Utilizing Laser Diode and LED Sources*
 - DOES NOT EXIST-Was administratively withdrawn
- ANSI Z136.3 (2011) *for Safe Use of Lasers in Health Care*

Laser Institute
of America

Laser Safety Standards: USA

- ANSI Z136.4 (2010) *Recommended Practice for Laser Safety Measurements for Hazard Evaluation*
- ANSI Z136.5 (2009) *Safe Use Of Lasers In Educational Institutions*
- ANSI Z136.6 (2005) *Safe Use Of Lasers Outdoors*
- ANSI Z136.7 (2008) *for Testing and Labeling of Laser Protective Equipment*
- ANSI Z136.8 (2012) *for Safe Use of Lasers in Research, Development, or Testing*

Laser Institute
of America

Questions to Ask

- Question 11: Are all the lasers in use certified?
- Rationale: Requirement of CDRH.

Laser Institute
of America

Laser Regulations: FDA

- 21 CFR Subchapter J – Federal Laser Product Performance Standard (FLPPS)
 - Applies to laser product manufacturers and those modifying laser products
 - Selling in US
 - Legally binding
 - Requires certification of laser products, and 1st step is classification
- <http://www.fda.gov/Radiation-EmittingProducts/default.htm>

Laser Institute
of America

CDRH Federal Laser Product Performance Standard

- **Basic Principle:** Radiation must be eliminated or safely contained except where and when access is necessary to provide function.

Laser Institute
of America

CDRH Federal Laser Product Performance Standard

- FDA does not consider a product to have been “manufactured” if it is constructed on a one time basis, by a particular company, for use in its manufacturing process at the place where constructed.

Laser Institute
of America

CDRH Federal Laser Product Performance Standard

- FDA will not consider multiple products to have been “manufactured” provided they
 - are not shipped in interstate commerce
 - are used solely at the place where constructed
 - are used by the same employees who constructed them
 - are not made on a recurring basis

Laser Institute
of America

Laser and Laser System Engineering Requirements

- All lasers must have:
 - Protective Housing
 - Safety interlocked to prevent access to laser radiation
 - Key Control
 - Laser Emission Indicator
 - Manual Reset

Laser Institute
of America

Labeling Requirements of the CDRH Standard

- All lasers must have:
 - Certification label
 - Identification label
 - Name and address of manufacturer
 - Place, month, and year of manufacture
 - Hazard classification
 - Radiation output info and warning logotype
 - Aperture label

**COMPLIES WITH 21 CFR SUBCHAPTER J.
NO USER SERVICEABLE PARTS WITHIN.**

AVOID EXPOSURE
VISIBLE and/or INVISIBLE
LASER RADIATION EMITTED
FROM THIS APERTURE

**Laser Institute
of America**

alliance
An OSHA Cooperative Program

Acts Prohibited by the CDRH Standard

- Sale of noncompliant products
- Failure to notify
- Failure to establish and maintain records
- Failure to certify; false certification

**Laser Institute
of America**

alliance
An OSHA Cooperative Program

Penalties Specified by the CDRH Standard

- \$1000 per violation
- \$330,000 per series of violations
- Can apply to any person - firm or individual

Laser Institute
of America

alliance
An OSHA Cooperative Program

International Laser Safety Standards

- International Electrotechnical Commission (IEC)
 - IEC 60825-1, for the Safety of Laser Products
- CDRH Laser Notice No. 50 permits manufacturers to classify their products in accordance with IEC 60825-1

Laser Institute
of America

alliance
An OSHA Cooperative Program

General Duty Clause

- **Michigan 2005:** “The employer did not furnish employment and a place of employment which were free from recognized hazards that were causing or likely to cause death or serious physical harm to employees in that employees were exposed to the hazards of infrared non-ionizing radiation capable of causing severe burns of the eyes and skin. Specifically, class IV, metal cutting lasers (1800 watts, carbon dioxide, wavelength 10.6 μm)...”
 - “Facility using high powered CO₂ laser for cutting metal products. Employees were using standard safety glasses and there was no guarding at and near where the laser was cutting metal. The company did not provide a laser safety program or have a laser safety officer at the time of investigation.”

Laser Institute
of America

alliance
An OSHA Cooperative Program

General Duty Clause

- **Citation specifies:**
 - No written SOPs to ensure that operators and nearby employees are not excessively exposed to non-ionizing radiation.
 - No LSO, education and training, control measures, medical surveillance program.
 - \$500 monetary penalty, 30 days to fix

Laser Institute
of America

alliance
An OSHA Cooperative Program

General Duty Clause

- Recommendation:
“One feasible method of compliance is to conform to the requirements of the American National Standards Institute Publication, ANSI Z136.1-2000.”

Laser Institute
of America

alliance
An OSHA Cooperative Program

OSHA Web Resources

- Safety and Health Topics
 - Laser Hazards
 - <http://www.osha.gov/SLTC/laserhazards/index.html>
- Laser Institute of America
 - <http://www.lia.org/subscriptions/news/releases/Alliance/>
 - <http://www.LIA.org>

Laser Institute
of America

alliance
An OSHA Cooperative Program

UNITED STATES
DEPARTMENT OF LABOR

OSHA

Occupational Safety & Health Administration We Can Help

Home | Workers | Regulations | Enforcement | Data & Statistics | Training | Publications | Newsroom | Small Business | OSHA

SAFETY AND HEALTH TOPICS

Laser Hazards

Introduction

LASER is an acronym which stands for Light Amplification by Stimulated Emission of Radiation. The laser produces an intense, highly directional beam of light. The most common cause of laser induced tissue damage is thermal in nature, where the tissue proteins are denatured due to the temperature rise following absorption of laser energy.

The human body is vulnerable to the output of certain lasers, and under certain circumstances, exposure can result in damage to the eye and skin. Research relating to injury thresholds of the eye and skin has been carried out in order to understand the biological hazards of laser radiation. It is now widely accepted that the human eye is almost always more vulnerable to injury than human skin.

Laser hazards are addressed in specific standards for the general industry.

Standards

This section highlights OSHA standards, directives (instructions for compliance officers), standard interpretations (official letters of interpretation of the standards), and national consensus standards related to laser hazards.

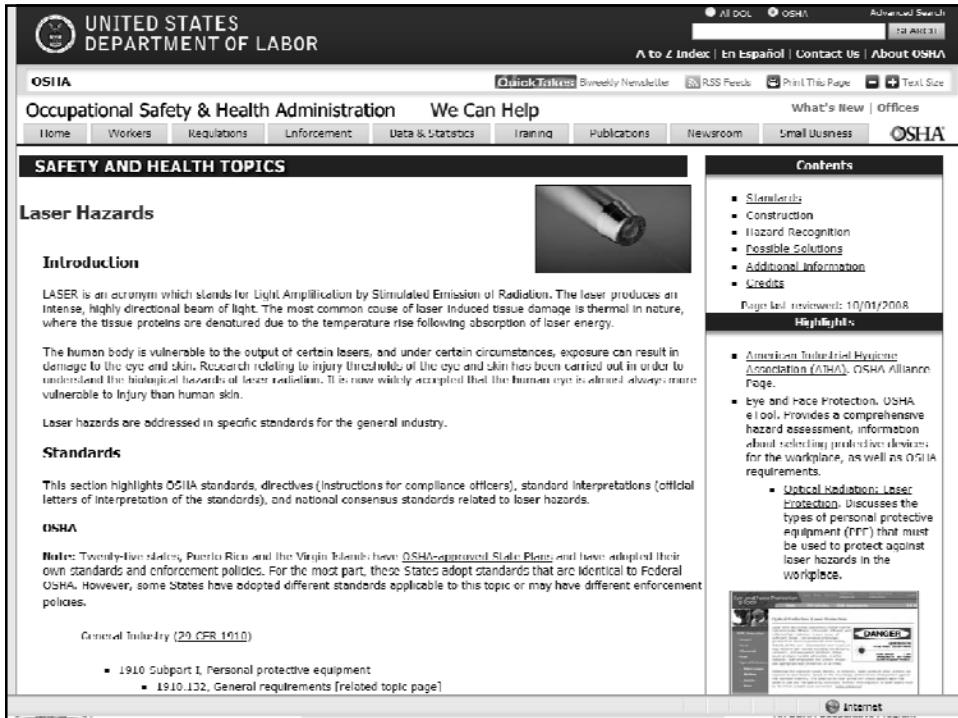
OSHA

Note: Twenty-five states, Puerto Rico and the Virgin Islands have OSHA-approved State Plans, and have adopted their own standards and enforcement policies. For the most part, those States adopt standards that are identical to Federal OSHA. However, some States have adopted different standards applicable to this topic or may have different enforcement policies.

General Industry (29 CFR 1910)

- 1910 Subpart I, Personal protective equipment
- 1910.132, General requirements [related topic page]

All OSHA resources are available online at www.osha.gov

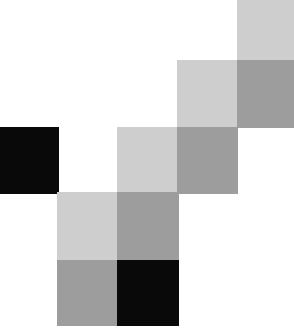

Page last reviewed: 10/01/2008

Contents

- Standards
- Construction
- Hazard Recognition
- Possible Solutions
- Additional Information
- Credits

Highlights

- American Industrial Hygiene Association (AIHA) OSHA Alliance Page.
- Eye and Face Protection. OSHA eTool. Provides a comprehensive hazard assessment, information about selecting protective devices for the workplace, as well as OSHA requirements.
- Optical Radiation: Laser Protection. Discusses the types of personal protective equipment (PPE) that must be used to protect against laser hazards in the workplace.



Laser Regulations: Various States & Municipalities

- Comprehensive regulations: Alaska, Arizona, Arkansas, Florida, Illinois, Georgia, Massachusetts, New York, Texas, Washington
- Laser pointer regulations (pending & adopted): Arkansas, California, Hawaii, Kansas, Illinois, Maine, Maryland, Massachusetts, Michigan, New Jersey, New York, North Carolina, Rhode Island, Tennessee, Texas, Virginia, and Washington
- Local ordinances restrict purchase of laser pointers by minors and/or restrict use

 Laser Institute of America

 An OSHA Cooperative Program

Other Questions Inspectors Should Ask?

Section 13

Questions to Ask

- Question 12: Have employees been given training? Ask to see the records.
- Rationale: Requirement of ANSI Z136.1.

Laser Institute
of America

alliance
An OSHA Cooperative Program

Questions to Ask

- Question 13: If running more than one shift, how are laser safety concerns dealt with?
- Rationale: It is important that second and third shift employees have the same training as first shift.

Laser Institute
of America

Thank You!

- Gus Anibarro
 - LIA Education Director
- 800-345-2737 or 407-380-1553
- gus@lia.org
- www.LIA.org

Laser Institute
of America

